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The accessibility of global biodiversity information has surged in
the past two decades, notably through widespread funding
initiatives for museum specimen digitization and emergence of
large-scale public participation in community science. Effective use
of these data requires the integration of disconnected datasets,
but the scientific impacts of consolidated biodiversity data net-
works have not yet been quantified. To determine whether data
integration enables novel research, we carried out a quantitative
text analysis and bibliographic synthesis of >4,000 studies pub-
lished from 2003 to 2019 that use data mediated by the world’s
largest biodiversity data network, the Global Biodiversity Informa-
tion Facility (GBIF). Data available through GBIF increased 12-fold
since 2007, a trend matched by global data use with roughly two
publications using GBIF-mediated data per day in 2019. Data-use
patterns were diverse by authorship, geographic extent, taxo-
nomic group, and dataset type. Despite facilitating global author-
ship, legacies of colonial science remain. Studies involving species
distribution modeling were most prevalent (31% of literature sur-
veyed) but recently shifted in focus from theory to application.
Topic prevalence was stable across the 17-y period for some re-
search areas (e.g., macroecology), yet other topics proportionately
declined (e.g., taxonomy) or increased (e.g., species interactions,
disease). Although centered on biological subfields, GBIF-enabled
research extends surprisingly across all major scientific disciplines.
Biodiversity data mobilization through global data aggregation
has enabled basic and applied research use at temporal, spatial,
and taxonomic scales otherwise not possible, launching biodiver-
sity sciences into a new era.

biodiversity informatics | community science | Global Biodiversity
Information Facility (GBIF) | biological collections | scientometrics

As we enter the sixth mass extinction (1, 2), effective Earth
stewardship requires high volumes of biodiversity data

across scales (2, 3), provided in openly accessible, verifiable, and
usable formats (i.e., FAIR Data Principles [findability, accessi-
bility, interoperability, reusablility] that serve as best practice
guidelines for data providers and publishers) (4). However, the
necessary infrastructure for the integration of disparate data
poses significant informatic and social challenges (5). Efforts
over the past 20 y have led to global data networks that aggregate
biodiversity datasets into consolidated data portals (6), providing
online access to genetic (7), phenotypic (8), ecological (9), and
occurrence (10) information at the level of individuals to biomes.
Among those is the world’s single largest biodiversity data portal
maintained by the Global Biodiversity Information Facility (GBIF;
http://gbif.org), an intergovernmental research infrastructure pro-
viding open access to biodiversity data and resources for data
publishing and use. Formed at the start of the “big data” concept
(11), GBIF was established with a strong museum specimen-based
focus (6), and, while maintaining these roots, has since evolved to
include many new data sources (12). Given the technological, an-
alytical, and conceptual advances made since GBIF was formed in
2001 (11), a comprehensive analysis and review of aggregated
biodiversity data use is now needed to quantify the scientific im-
pacts of data mobilization and promote the continued develop-
ment for the next generation of biodiversity-related research.

Over the past 20 y, biodiversity research has been transformed
by a big data revolution (5, 11, 13). The digitization of previously
inaccessible data (“dark data,” ref. 14) and rapid new data creation
through public participation in research (hereafter referred to as
“community science”) (15) has led to unprecedented biodiversity
data mobilization, much of which is available via GBIF. Since 2011
alone, the US National Science Foundation funded program
iDigBio has mobilized more than 120 million specimens held in US
institutions—with concurrent efforts continuing in parallel across
the world (16). Likewise, new observation-based records collected
through community science platforms have proliferated, with pio-
neering programs such as eBird [>700 million occurrences (17)]
http://observation.org [>39 million occurrences (18)], and iNatur-
alist [>18 million occurrences (19)], outpacing museum specimen
digitization by orders of magnitude (12). A major challenge to data
use, however, is the integration of disparate datasets for efficient
and reliable research use (6, 20–22).
Recent studies have focused on spatial, taxonomic, and tem-

poral data gaps of the GBIF-mediated data themselves (12,
23–29), but the scientific impacts and patterns of GBIF-mediated
data use have not been quantified. Concomitant with GBIF
growth, the development of species distribution modeling (SDM)
statistical techniques (30) and increased natural history collection
digitization (16) suggests GBIF data use may be strongly directed
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toward research in species distributions and taxonomy/systematics.
However, aside from speculation, the scope, patterns, and novelty
of research stimulated by GBIF-available data remains largely
unknown.
Leveraging a dataset of >4,000 studies that rely upon GBIF-

mediated data, we provide a comprehensive analysis of data use
patterns of a global biodiversity data network. We broadly asked:
1) Is biodiversity data growth matched by research use? 2) Are
certain data types used more and by whom? And especially: 3)
Do certain research topics dominate GBIF-mediated studies and
have they changed through time?
To quantify the major research themes and their temporal

trends in the GBIF-enabled literature (i.e., studies that rely upon
GBIF-mediated data), we performed a computational text
analysis called topic modeling, also known as automated content
analysis. Topic models use machine learning methods to classify
texts according to probability distributions of word cooccurrence
within texts and among the entire corpus (i.e., all texts analyzed).
Initially developed in the social sciences and humanities (31),
topic modeling has gained traction in biology to synthesize large
volumes of literature (32). Here, we used a variant called struc-
tural topic modeling (STM) (33) derived from the widely used
latent Dirichelet allocation (LDA) topic model approach (34).
STM is an unsupervised, mixed-membership model, meaning that
topics emerge inductively (i.e., no a priori assignment of topics by
researcher), and each text can be classified to multiple topics.
Each document is represented as a vector of topic proportions
according to fractions of words assigned to a given topic. We
combined topic modeling, science mapping (35), and traditional
review to quantify the scope, trends, and broader thematic land-
scape of GBIF-enabled data use.

Results
Biodiversity Data Availability and Use Has Increased. Data available
through GBIF have surged in the past decade, growing by
1,150% since 2007 (2007: 125 million; 2020: 1.6 billion occur-
rence records; Fig. 1A). Both observation- and specimen-based
(i.e., those linked to physical vouchers) (12) records have in-
creased. The overall increase was strongly driven by the expan-
sion of public participation and observation-based datasets.
Community science-generated datasets (i.e., data collected pri-
marily by volunteers, frequently called “citizen science” or
“public participation in research”) (15) only accounted for 11%
of occurrence data in 2007, yet account for 65% of data in 2020.

Specimen-based occurrences comprised 14% of GBIF-mediated
data in 2020 (85% observation based, 1% not reported by data
publisher), a decrease from 25% in 2007. Despite numerical dom-
inance of observation-based data, specimen-based data notably in-
creased through museum digitization efforts, with 187.7 million
specimens newly mobilized from 2007 to 2020 (sixfold increase).
Research use of GBIF-mediated data has similarly risen in the

past decade, with 723 peer-reviewed studies published in 2019
alone compared to 148 studies published cumulatively from 2003
to 2009 (Fig. 1B). In 2016, GBIF began issuing digital object
identifiers (DOIs) with each data download to effectively track
data use. Best data practices include citing data DOI(s) in
publications. Though increasing, only a minority of authors cite a
DOI (38% of studies in 2019). Of the 520 studies with a GBIF-
specific data DOI, the number of records cited per study range
from single occurrence points to 1.6 billion (median = 9,071;
interquartile range = 699 to 227,302). Of the 26,046 separate
datasets in GBIF with at least 1 study citing data, median citation
rate is 11 studies per dataset (highest: 713). Community science
datasets tend to have more citations (Mediancommunity science =
13; Mediannoncommunity science = 8; Wilcoxon rank sum test, W =
6,211,175, P < 0.001), which is perhaps unsurprising, as larger
datasets tend to have more citations (Spearman’s correlation,
rho = 0.39, df = 32,635, P < 0.001). However, when controlling
for dataset size, the opposite is true (dataset citations scaled per
100 occurrence records: Mediancommunity science = 0.1; Median-
noncommunity science = 3; W = 11,514,982, P < 0.001).
Taxonomic discrepancies exist between data availability and

data use. For example, vertebrate taxa account for 68% of cur-
rent GBIF-available data (Fig. 1A), yet proportionally fewer
studies use these data (27% of 2,496 publications from 2016 to
2019; Fig. 1B). Conversely, plants are the most common use of
GBIF-mediated data, representing nearly half of recent studies
(44%) but only comprise 19% of GBIF-available data.

Data Integration Facilitates Global Research and Access. The global
representation of GBIF-mediated data is reflected in research
use, with 69% of recent studies (2016 to 2019) spanning more
than one continent. However, geographic patterns of research
and researcher affiliation are nonrandom. Of those studies fo-
cusing on biodiversity at the country- or continental-scale, strong
geographic asymmetries exist between author affiliation and the
study area (Fig. 2). These studies tend to focus on Latin American
biodiversity (39% of 773 single region studies published 2016 to

A B

Fig. 1. Growth over time of the biodiversity occurrence data accessible via the Global Biodiversity Information Facility (GBIF) (A) and peer-reviewed articles
using these data (B). Occurrence data (solid line in A) is further broken into observation-based records (dashed) and museum specimen-based records (dotted).
Pie charts illustrate proportional taxonomic representation in GBIF datasets as of July 2020 (A) and corresponding representation of data use in recently
published articles (2016 to 2019; solid black line) (B). “Other” refers to organismal groups not included in other categories (A and B). “>1 category” refers to
data use of multiple organismal groups (B). Citable digital object identifiers (DOIs) were provided with each GBIF data download since 2016 (dash line in B).
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2019; Fig. 2A), whereas most authors are affiliated with European
institutions (41% of 4,933 unique author affiliation by study
combinations between 2016 and 2019; Fig. 2B). A total of 58 of
these 733 studies were published entirely by authors affiliated
outside the study region. Country-level data use and authorship
reveal strong biases—European countries tend to have more re-
searchers than expected based on region-level studies, whereas
proportionally more studies on the biodiversity of Mexico, Brazil,
and China were published than expected based on the number of
authors from those countries (Fig. 2A). Authorship biases are
similar for studies of global extent (SI Appendix, Fig. S5).

GBIF-Mediated Data Use Is Conceptually Diverse and Temporally
Dynamic. Computational text analysis of 4,035 studies from
2003 to 2019 resulted in 24 major topics, each defined by an
associated set of high probability words in article titles, abstracts,
and keywords (Fig. 3, Inset; SI Appendix, Table S1). As an unsu-
pervised approach, structural topic model results included a diverse
set of topics that emerged without a priori classifications, including
application-based (e.g., topic 7, conservation), conceptually based
(e.g., topic 20, phenotype), methods-based (e.g., topic 2, biodiversity
informatics), and taxonomic/biome-focused (e.g., topic 18, marine
biology) topics. No single topic dominated the GBIF-mediated lit-
erature. Species distribution modeling methods was the most prev-
alent (topic 1; 7% of all text analyzed) and species interactions was
as the least prevalent (topic 24; 2% of all text analyzed).
We used correlation network analysis to visualize research topic

clusters (Fig. 3). Related topics are those that comprise word sets
that are shared within and across studies. Topics relating to con-
servation, biodiversity data use and access, and macroecological
patterns clustered together (i.e., upper portion of Fig. 3), with
topics relating to discrete concepts of phylogenetic and population-
level variation and interactions clustered together (e.g., topic 12
functional ecology; topic 8, clade diversification). Accounting for
31% of the literature, the top five most prevalent topics relate to

aspects of SDM use and theory, including all aspects of SDM tools,
development, application, and mostly studies predicting species
distributions under future climate scenarios. Taxonomic treatments
(topic 6) links novel species occurrences (topic 5) and molecular
and morphometric topic areas. Interestingly, disease-related topic
(topic 22) clusters with invasion biology-related topics (topics 11,
14, and 23).
GBIF research-use areas were not static, with some topics

showing marked decline in relative prevalence as others become
more common through time (Fig. 3). We compared relative
differences in overall topic prevalence through time by com-
paring studies published from 2016 to 2019, a recent period of
rapid growth in GBIF-mediated literature when data DOIs be-
gan (62% of analyzed studies), to those published before 2016.
Although among the most prevalent topics across all years, the
conceptual implementation of SDMs has shifted from theoreti-
cal and analytical tool development to application of SDMs. The
development of SDM-related tools (topic 1) exhibited a modest
decline (−10%), while studies directly applying SDMs toward
applied questions increased by 48%, the largest relative increase
of all topics. Similarly, closely related to SDMs and conservation
topics, climate futures (topic 3) increased by 18%. Likewise,
biodiversity informatics (topic 2), including solutions to big data
use, access, and aggregation, decreased by 15%. Aside from SDMs,
macroecology-related topics, including spatial ecology and large-
scale diversity patterns, remained relatively stable. Though ac-
counting for relatively fewer studies overall, emerging topics in-
clude species interactions, phenotype, and disease (relative increase
by 32%, 25%, and 28%, respectively). Invasive species manage-
ment (topic 23) showed the largest relative decrease of any topic
(−33%). Taxonomic treatments (topic 6) exhibited a relative de-
crease of 21%. Despite these emerging trends in proportional
growth within topics, overall topic ranks (Fig. 3, Inset) remained
relatively stable between time periods indicating no topic has dis-
appeared or emerged between time periods.

A B

C

Fig. 2. Geography of GBIF data use and authorship. World map (A) highlights disparities between country-level biodiversity data use and author affiliation.
The map overlays two normalized datasets: orange circles indicate country-level biodiversity data use, and teal circles indicate country-level author affilia-
tions. Circle sizes are proportional to the maximum value in each dataset. Researcher affiliation (teal) is overlaid atop research coverage (orange), mixing to
form brown where they overlap. Wider teal rings indicate disproportionately higher number of researchers than research specific to that country (e.g., United
Kingdom), whereas wider orange rings (e.g., Mexico) indicate the opposite. Brown circles with no external rings indicate a proportionally similar number of
studies about a given country to authors from a given country (e.g., United States). Bar charts show the corresponding frequency of studies published in 2016
to 2019 about a specific region, excluding global studies (B) and the frequency of authorship from each region (C; unique country-level affiliation by study
counts). GBIF regions follow ref. 63.
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GBIF-Mediated Data Spans Disciplinary Boundaries. We summarized
the current and potential future use space of GBIF-mediated
data through science mapping to visualize literature sets in a
broader research landscape (36). GBIF-mediated studies were
mapped onto a widely used scientific base map consisting of a
network of subdisciplines based on topical clustering of journals
(36). GBIF-enabled studies were published in 1,062 journals
(746 in 2016 to 2019 alone), of which 30% were open access at
time of publication (38% in 2016 to 2019; SI Appendix, Fig. S6).
The resulting GBIF map of science illustrates cross-disciplinary

breadth, with all 13 primary disciplinary categories represented,
while also indicating where in the scientific research landscape
GBIF-mediated data have not yet been widely applied (Fig. 4).
With 10 of the 13 major disciplines each represented by <100
studies, the GBIF-mediated literature is centered on biology-
related subdisciplines (79% of mapped studies).

Discussion
Although open access to large volumes of biodiversity data
serves as a logical step toward biodiversity information synthesis,

Fig. 3. Structural topic model results from 4,035 studies that used GBIF-mediated data published from 2003 to 2019. Topic correlations network visualizes
quantitative associations between topics (nodes), with topics near each other and connected by a gray line more likely to appear together in a given study.
Node color denotes the relative change in prevalence over time within each topic, comparing topic prevalence in earlier studies (2003 to 2015) to those
recently published (2016 to 2019). Node sizes are proportional to overall topic proportions. Network graphed using the Fruchterman–Reingold algorithm.
(Inset) Bar chart of topic proportions across all years, indicating the percentage of the total corpus that belongs to each topic, with topic numbers corre-
sponding to topic names in network graph and bar color corresponding to temporal change. The top six words by probability associated with each topic are
given in italics (SI Appendix, Table S1).

Fig. 4. The GBIF map of science, visualizing the network of interdisciplinary knowledge facilitated through GBIF-mediated data in the context of a broader
research landscape. The reference base map (gray lines), the UCSD map of science (36), displays a network of >25,000 journals classified across 554 subdis-
ciplines (nodes), grouped into 13 primary disciplines (colors). Circles illustrate GBIF-mediated studies (2003–2019) centered on subdiscipline node assignments
with circle size proportion to number of studies. Note that only GBIF-mediated studies published in journals in UCSD map of science are included (2,810
articles, 548 journals). Map is a 2D projection of a spherical 3D layout (i.e., the right and left of map connect) and produced using the Sci2 Tool (61).
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the real value of big data is in its use, not volume. We analyzed a
comprehensive bibliographic dataset of 4,035 studies to docu-
ment patterns in GBIF-mediated data use over the past two
decades—a time period marked by unprecedented growth in
data availability and the advent of modern biodiversity infor-
matics. Past studies on biodiversity databases focused on con-
cerns of their quality (29, 37), biases (23), and gaps (25, 27, 38).
A quantitative assessment of biodiversity data use has been
lacking, yet such an evaluation is needed to assess the impact of
large-scale data mobilization efforts and for the strategic devel-
opment of data-intensive biodiversity research (22). Our results
provide quantitative evidence on the pivotal role of integrated
biodiversity data networks to enable research that was previously
not possible.
Species occurrence data lie at the heart of macroecology and

related fields, so it is perhaps unsurprising that the most common
use of GBIF-mediated studies involves species distributions. A
similar pattern was reported in a recent review of biodiversity
database use (20). However, our topic models allowed finer scale
separation of research areas through time; most notably, the
varied uses of SDMs. SDMs are a broad class of statistical ap-
proaches that estimate species’ potential geographic distributions
based on known occurrences and corresponding environmental
data (30). We found signs of early shift from initial focus of SDM
theory development toward SDM application. In addition to
GBIF-mediated data, this trend was undoubtedly driven by the
new complementary abiotic datasets that are necessary for such
analyses, such as global climate data (e.g., WorldClim) (39) alone
was cited in 38% of GBIF-enabled studies and statistical tools
(e.g., MaxEnt) (40) was cited in 32% of studies. With >1,000
SDM-related publications per year (41), the field is rapidly de-
veloping, including establishing community guidelines for standard
reporting to maximize reproducibility that include the citation of
GBIF-generated data DOIs (42, 43).
Topic model results illustrated wide-ranging GBIF-mediated

research themes. A benefit of automated text-based analytical
approaches is that topic classification was not limited to an
expected set of research areas. Though not among the most
prevalent topics overall, the relative increase in GBIF-mediated
research on species interactions is especially noteworthy, indicat-
ing research application of taxonomically disparate data. Surpris-
ingly, nearly a 10th of recent GBIF-mediated studies included data
from multiple distantly related taxonomic groups (denoted as “>1
category” in Fig. 1B). Data use was not directly driven by data
availability, as more studies used plant data than expected by
proportional representation across GBIF (Fig. 1). Similarly, the
increasing research focus on disease is also likely a product of
integrating taxa-specific datasets (e.g., invertebrate disease vectors
with animal hosts; different trophic levels). As research becomes
more cross-disciplinary, taxonomically integrated data should be
promoted due to the increasing societal relevance of research on
crop and zoonotic disease origins, including intensive taxon sam-
pling needed to pinpoint the origins of SARS-CoV-2 and future
threats to human health (44).
Trends in the GBIF-enabled literature calls attention to the

value and the need for further integration of otherwise disparate
data. A common critique about big data aggregation is a loss of
information about the individual datapoints themselves. In ad-
dition to extensive natural history collection digitization world-
wide (16, 45), the pace at which new observation-based data has
been collected through public participation is accelerating. Many
are concerned that observation-based occurrences are over-
shadowing specimens (12), which have long been critical to
biodiversity science (46, 47) and providing ecological baselines in
a rapidly changing world (45). A somewhat contrary view is that,
despite lacking a physical record, the rise of observation-based
data collected by humans and machines is necessary to provide
large-scale data for large-scale questions (48). Our analysis of

GBIF-enabled data use highlights synergistic roles for observa-
tion- and specimen-based data when combined. Biodiversity re-
search benefits from both types of data, and the growth of one
should not come at the expense of the other.
Beyond connecting data, GBIF bridges research communities

by providing the opportunity for synergy between museums,
community science efforts, and ecology and evolution fields at
large. GBIF’s initial vision was strongly specimen based, as a
digital data hub for liberating and accessing the world’s biodiver-
sity data, which at the time was held almost entirely in museums
(6). With the development of shared data standards (49) and goals
across funding initiatives (16), significant progress has been made
toward that vision. Still, only 10 to 20% of specimens are available
through GBIF, based on an estimated 1 to 2 billion specimens
worldwide (50). Though a sizable increase from 3% just a decade
ago, much museum digitization work remains (especially in certain
taxa) (51). Museums are becoming increasingly connected through
natural history specimen digitization (52) and the integration of
complementary data streams (47).
Tremendous effort and financial investments have contributed

to GBIF-mediated data. Here, we documented the research
made possible by the countless efforts of data collectors, re-
searchers, funding agencies, and data curators. Though we focus
on peer-reviewed studies that actively use GBIF-mediated data,
this infrastructure has also supported knowledge production and
dissemination through other published media. GBIF-mediated
data were mentioned or cited in 680 nonpeer-reviewed publi-
cations from 2016 to 2019 alone, including student theses, white
papers, technical reports, and web pages. Supported by the
world’s governments, the growth of the GBIF network required
collaborative investments from participant countries and the
recognition of the critical value of centralized open access to
standardized biodiversity data for the common scientific good.
While our results confirm this societal value, the future of data
integration must continue toward maximizing global participa-
tion to enable a new scientific era that is scientifically and so-
cially inclusive. The open data culture (53) necessitated by this
arrangement has contributed to biodiversity knowledge genera-
tion by a more globally inclusive and diverse research community
(54), including digital repatriation of data to regions with history
of exploitation. Although data integration has improved global
authorship, research patterns indicate legacies of scientific co-
lonialism persist (Fig. 2), with proportionally more research on
the biodiversity of the Global South being authored by re-
searchers in the Global North (sensu ref. 53). On one hand, this
pattern could be viewed as promising, given that global data
integration has enabled researchers from across the world to
study biodiversity otherwise not possible. On the other hand,
however, nearly 8% of regional studies were completed without
regional authors, suggesting needed progress toward mutual in-
ternational collaboration. Further, the use of data DOIs not only
ensures data transparency at the core of open science (53), but
also provides a mechanism of data attribution so data providers
are aware and recognized for their contributions. However, data
citation remains inadequate in biodiversity science, with a recent
study finding >33% of papers reviewed provided insufficient
citation of biodiversity dataset(s) used and >25% of studies cit-
ied databases that were no longer accessible (20).
Our findings inform and validate the prioritization of ongoing

and emerging initiatives with common goals to optimize biodi-
versity science through data integration. As outlined in ref. 16,
these include nationally and internationally funded efforts that
develop biodiversity data infrastructure, such as, for example, the
US National Science Foundation’s Advancing Digitization of
Biodiversity Collections (ADBC) program, Australia’s Atlas of
Living Australia (ALA), Mexico’s Comisión Nacional Para el
Conocimiento y Uso de la Biodiversidad (CONABIO), Brazil’s
Sistema de Informação sobre a Biodiversidade Brasileira (SiB-Br)
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and Centro de Referência em Informação Ambiental (CRIA),
and China’s National Specimen Information Infrastructure (NSII).
Supported by the European Union, the Distributed System of Sci-
entific Collections (DiSSCo) is actively developing the infrastruc-
ture to implement the digital specimen framework for managing the
constellation of data related to specimens (55), with synergistic ef-
forts in the United States through the Extended Specimen Network
(47). Related efforts include the development of a global registry of
the world’s natural history collections (56). These physical, cyber,
and human expertise resources are sought to be effectively lever-
aged together to form an alliance for biodiversity knowledge (57),
toward the common goal of biodiversity synthesis.
The far reach of GBIF-mediated data demonstrates biodi-

versity data integration as both enabling and catalyzing biodiver-
sity science. First, globally integrated datasets enabled researchers
to ask questions at taxonomic, temporal, and spatial scales that
would otherwise be impossible—for instance, GBIF-mediated
studies have enabled cross-taxon global analyses from a global
authorship. Second, data integration catalyzes biodiversity re-
search by providing researchers instantaneous data access stan-
dardized in a single portal, intensifying the rate at which research
can be done—for instance, GBIF-enabled studies have cited use
of >26,000 disparate datasets that would otherwise be either un-
available or spread across many databases. Though promising, this
work is far from a culmination. Our review highlights the need for
continued development to facilitate a new era of data-intensive
biodiversity science. We stress the need for continued data digi-
tization and publishing, the creation of data for a more complete
unbiased view of biodiversity, efficient routes for providing feed-
back to improve data quality, new initiatives and tools for linking
databases across disparate forms, and a deeper integration of
occurrence records with phylogenetic, environmental, phenotypic,
ecological, and genetic databases.

Materials and Methods
GBIF-Mediated Literature Database. The GBIF Secretariat curates a long-term,
continuously updated bibliographic database by actively tracking the use of
GBIF-mediated data in the scientific literature. Possible new GBIF-mediated
publications are regularly screened as they are published (SI Appendix, Fig.
S1), notified through email alerts from journal publishers and literature
databases (Google Scholar, Scopus, Wiley Online Library, SpringerLink, NCBI
Pubmed, bioRxiv) based on GBIF-related keywords and phrases (e.g., “GBIF,”
“Global Biodiversity Information Facility”) and GBIF-assigned dataset DOI
prefixes (e.g., 10.15468). Each GBIF-related publication was flagged with a
GBIF use category: 1) direct use of data in a quantitative analysis (e.g., species
distribution modeling), 2) coarse facts derived from overall data (e.g., species
presence in a given country), and 3) mention of GBIF without specific data use.
If included, data DOIs were recorded in the database, which is expanded to
attribute specific data use to all contributing datasets and data publishers.
Bibliographic metadata about each publication was gathered, including type
(e.g., journal article, book chapter), countries of author affiliations (including
all authors), countries of research coverage (excluding global studies), peer
reviewed (yes/no), and open access status at time of publication (yes/no). In the
present study, we included all peer-reviewed journal articles that made sub-
stantive use of GBIF-mediated data. The final dataset for text analysis (de-
scribed below) included 4,035 GBIF-mediated peer-reviewed articles with
English abstracts, published from 2003 to 2019 (SI Appendix, Fig. S1).

Topic Models. Automated text analysis was performed on 4,035 articles, in-
cluding article abstracts, titles, and keywords using the stm package (58) in R

(59). Publication year was included as a covariate, as we were specifically
interested in how topic prevalence changed through time and word usage
within topics may vary over time. Although STM is an automated approach,
a clear understanding of the analyzed text is required by the user to de-
termine the number of topics to estimate. The “optimal” number of topics
modeled depends on prior research on the subject matter, the scope of goals
or questions motivating the analysis, and the corpus itself (60). Modeling too
few topics lumps otherwise meaningful topics into broad categories that
may blur interpretation and modeling too many topics adds superfluous
complexity and may result in many topics that lack substantive meaning.
Following ref. 60, the decision on the number of topics to model was de-
termined by comparing output from a range of models that differed in
number of topics. For each model, a subset of abstracts was read with the
highest fractional assignment to each topic to evaluate the thematic cohe-
siveness of abstracts within each topic and interpretive meaning. Topic
model selection and validation is further described in SI Appendix.

Topic models have several strengths as tools for identification and map-
ping of major themes in a body of literature (32). First, manual coding of
topics for each paper was unfeasible to do, given the large size and thematic
breadth of this bibliographic dataset. Second, as an unsupervised approach,
this method avoids potential researcher disciplinary bias or inconsistencies,
as manual methods rely on expectations and perspectives of person(s)
manually assessing texts. Last, because topic definition is unsupervised, the
method allows for the emergence of unexpected research themes, such that
topics can be discovered rather than assumed (33).

Science Map. To understand the research space of GBIF-mediated studies
relative to a broader scientific research landscape, we mapped GBIF-
mediated studies onto a widely used reference base map, the University of
California San Diego (UCSD) map of science (36) using Sci2 tool (61). The
UCSD map of science was updated in 2010 (36) based on bibliographic analyses
to quantify the network of major and minor disciplinary foci (subdisciplines
assigned based on journal clustering). Because the UCSD map of science was
based in part on the journals indexed in theWeb of Science (Clarivate Analytics,
formerly ISI), we first exported full bibliographic records from the Web of Sci-
ence by searching the database via article DOIs in the GBIF-mediated studies on
June 4, 2020. This resulted in 3,426 Web of Science records across all years (85%
of total GBIF-mediated literature). It is unlikely that the excluded GBIF-
mediated studies were a biased subset by research area. Unlike topic model-
ing, our goal for creating a GBIF map of science was to coarsely visualize actual
and potential research use space from a broad perspective (e.g., all journals
indexed in the Web of Science). Unlike topic models, journal classifications are
indicative of readership, not article level content. We reclassified PLoS ONE
from its originally assigned single subdiscipline (disease related) to be more
accurately interdisciplinary (similar to PNAS). This reclassification reduced the
proportional representation of GBIF-enabled studies mapped to infectious
disease (9 to 3%) but otherwise was similar (SI Appendix, Fig. S7). We did not
manually assign subdisciplines to unclassified journals to avoid classifications
that are inconsistent with existing journal assignments (36).

Data Availability. GBIF-mediated literature database (continuously updated)
can be found at https://www.gbif.org/resource/search?contentType=literature.
Source code and data are available in GitHub at https://github.com/jmheberling/
GBIF_Systematic_Review and archived in Zenodo at https://doi.org/10.5281/
zenodo.4009481 (62).
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