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Working with population totals in the presence of missing data
comparing imputation methods in terms of bias and precision
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Abstract Missing observations in water bird censuses are

commonly handled using the Underhill index or the bird-

STATs tool which enables the use of TRIM under the hood.

Multiple imputation is a standard technique for handling

missing data that is rarely used in the field of ecology, but is a

well known statistical technique in the fields of medical and

social sciences. The purpose of this paper is to compare these

three methods in terms of bias and variance. The bias in the

Underhill method depends on the algorithm and starting

values. birdSTATs and multiple imputation are unbiased in

the case of missing values that are missing completely at

random; more missing values implies less information, and so

wider confidence intervals are expected as the missingness

increases. The Underhill method and birdSTATs tool

underestimate the variance; omitting data from a complete

dataset and applying the Underhill index or birdSTATs tool

results in smaller confidence intervals. Multiple imputation

with an adequate imputation model provides wider confi-

dence intervals. Biased parameter estimates with underesti-

mated variance can potentially lead to incorrect management

and policy conclusions. Hence, we dissuade the use of

Underhill indices or the birdSTATs tool to handle missing

data, rather we suggest that multiple imputation is a more

robust alternative, even in suboptimal conditions.

Keywords Missing data � Multiple imputation �
Monitoring of biodiversity � Survey design and analysis

Zusammenfassung

Gesamtbestandszahlen trotz fehlender Daten – ein

Vergleich von Imputationsmethoden hinsichtlich

systematischer Abweichungen und Genauigkeit

Fehlende Beobachtungen bei Wasservogelzählungen

werden üblicherweise gehandhabt, indem der Underhill-

Index oder birdSTATs angewendet werden. Letzteres nutzt

TRIM. Multiple Imputation ist eine Standardmethode für

die Handhabung fehlender Daten, die in der Medizin und in

den Sozialwissenschaften wohlbekannt ist, in der Ökologie

jedoch kaum angewendet wird. Das Ziel dieses Artikels ist

es, diese drei Methoden hinsichtlich systematischer

Abweichungen und Varianz zu vergleichen.

Systematische Abweichungen beim Underhill-Index

hängen vom Algorithmus und von den Ausgangswerten

ab. birdSTATs und multiple Imputation sind frei von

systematischen Fehlern, falls Daten vollkommen zufällig

fehlen (MCAR). Fehlen mehr Werte, bedeutet dies weniger

Information, und folglich erwarten wir umso größere

Konfidenzintervalle, je mehr Werte fehlen. Der

Underhill-Index und birdSTATs unterschätzen allerdings

die Varianz. Lässt man aus einem an sich kompletten

Datensatz Daten aus und wendet den Underhill-Index oder

birdSTATs an, werden die Konfidenzintervalle kleiner.

Multiple Imputation mit einem geeigneten

Imputationsmodell liefert hingegen größere

Konfidenzintervalle. Systematisch abweichende

Parameterschätzungen mit unterschätzter Varianz führen

möglicherweise zu falschem Management und

Leitlinienabschlüssen. Daher raten wir vom Gebrauch des
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Underhill-Index oder birdSTATs zur Handhabung

fehlender Daten ab. Multiple Imputation ist selbst unter

suboptimalen Bedingungen eine robustere Alternative.

Introduction

R.A. Fisher wrote: ‘The best solution to handle missing

data is to have none’ (Nakagawa and Freckleton 2008).

However, in practice some missingness in data is inevi-

table. For example, long-term waterbird monitoring is

prone to have missing counts because it requires a lot of

human resources due to its large span in both time and

space. Missingness in the data complicates data analysis

and can introduce bias if not accounted for correctly.

As early as the end of the eighties, Rubin (1987)

introduced the multiple imputation procedure as a general

approach to handle missing values correctly. Although

multiple imputation analysis is well established in fields

such as medical and social sciences (9625 citations

according to Google Scholar), its use is only emerging in

the field of ecology (Nakagawa and Freckleton 2008), and

its application in the analysis of population monitoring data

is still limited (e.g. Blanchong et al. 2006; Rice et al.

2009).

In comparison, the Underhill index (Underhill and Prys-

Jones 1994) and the TRIM (TRends and Indices for

Monitoring data) software package (Pannekoek and Van

Strien 2005; Van Strien et al. 2001, 2004) are two more

popular ways of handling missing data in population

monitoring. A search on Google Scholar revealed 118

citations for Underhill and Prys-Jones (1994), including

those of Cayford and Waters (1996), Goss-Custard et al.

(1998), Perez-Arteaga (2004), Atkinson et al. (2006),

Rendón et al. (2008) and Dalby et al. (2013) who apply the

Underhill index on bird data and Kirkman et al. 2007 and

Wright et al. 2013) who apply it to data on mammals.

Dennis et al. (2013) apply a similar technique but with a

different model on insect data. Another search on Google

Scholar revealed 91 citations for Van Strien et al. (2001),

including 34 for Van Strien et al. (2004) and 310 for var-

ious versions of Pannekoek and Van Strien (2005). A few

examples are Gregory et al. (2005, 2007), Soldaat et al.

(2007), Ward et al. (2009) and Musilová et al. (2014) on

birds and Conrad et al. (2004), Van Dyck et al. (2009) and

Staats and Regan (2014) on insects. TRIM indices for

several countries are sometimes combined into suprana-

tional indices (Gregory et al. 2008; Vorisek et al. 2008).

The European Bird Census Council requires member

organisations to use TRIM or birdSTATs (van der Meij

2013), which is an access shell around TRIM, to produce

national indices (http://www.ebcc.info/index.php?ID=13).

The aim of this paper was to investigate how well these

two popular methods perform and effectively deal with

missing data in comparison to the more generic multiple

imputation technique for handling missing data (Rubin

1987). To our knowledge, no thorough evaluation of the

birdSTATs and Underhill methods exist. Yet, as the many

references cited above illustrate, they are applied fre-

quently in population monitoring and related fields. ter

Braak et al. (1994) mention Rubin (1987) and claim that

Underhill and Prys-Jones (1994) use the principles of

multiple imputation. In our opinion, this is not the case as

we will demonstrate in this paper.

Materials and methods

We start by describing how census data are transformed

into annual population indices in the presence of missing

data. Then we describe how we simulate the census data

and the patterns of missingness. Finally we introduce the

different imputation methods and how their performance is

evaluated.

The census data and population indices

Count data (Cijk)

In many bird monitoring programmes, sites are revisited

multiple times per year. Hence, we denote the observed

number of birds Cijk with three indices: year i : 1; . . .; ny,

month j : 1; . . .; nm and site k : 11; . . .; ns.

In this paper we assume the counts follow a negative

binomial distribution (Eq. 1) with mean or expected value

lijk and size parameter h. The variance (Eq. 3) depends on
the mean and a size parameter h, which governs the

overdispersion. Small values of h imply strong overdis-

persion, while for h going to infinity, with the negative

binomial distribution reduced to a Poisson distribution. We

refer the interested reader to Zuur et al. (2012) for an

introduction to negative binomial distribution.

Cijk �NBðlijk; hÞ ð1Þ

EðCijkÞ ¼ lijk ð2Þ

VarðCijkÞ ¼ lijk þ
l2ijk
h

ð3Þ

The monthly population size (Pij)

If the monitoring programme covers most of the relevant

sites in the region, the data collection is close to a census and

it therefore is logical to interpret the sum (Eq. 4) over all
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sites within 1 year i and month j as the monthly population

Pij. Otherwise, under the assumption that there are no major

changes in the population distribution, Pij can be considered

as an indicator of the population size in the region.

Pij ¼
Xns

k¼1

Cijk ð4Þ

The annual population index

For each year, there are nm Pij-values. To construct a single

annual population index (API) from these monthly popu-

lation totals, we fit a negative binomial generalised linear

model (glm.nb) (Venables and Ripley 2002) with effects

for year ðciÞ and month ðnjÞ.

Pij �NBðmij; hÞ ð5Þ

logðmijÞ ¼ ci þ nj ð6Þ

In this model, eci is an estimate of the API for year i at the

reference month j (where nj ¼ 0). In fact, the above model

corrects the Pij for the average seasonal pattern, making the

year-to-year variations more comparable to uncover trends

or other patterns.

Note that API is dependent of the choice of the reference

month. For the sake of simplicity, in this paper, we take the

first month as the reference. However, for real-life appli-

cations, we recommend chosing the most relevant month

based on expert knowledge, such as the month with the

highest expected numbers.

From the fitted model, it is also possible to derive the

confidence limits for the parameter ci (LCLi; UCLi) and

(after transformation) for API.

The complete, observed and augmented dataset

In practice, not all sites are visited at every point in time,

resulting in missing counts. However, to estimate API, it is

necessary to have a complete dataset, and various impu-

tation methods have been developed to fill in the missing

data. In the paper, we distinguish between three types of

datasets: complete, observed and augmented. A complete

dataset has counts for every combination of year, month

and site; the observed dataset has missing counts for some

combinations of year, month and site; and the augmented

dataset is an observed dataset in which the missing counts

are replaced by imputed values by an imputation method.

Comparing imputation methods

To compare the imputation methods, i.e. methods used for

filling in missing values, we first simulate complete

datasets and introduce missing counts according to a cer-

tain pattern to obtain observed datasets. Then, we apply

various imputation methods to augment the data, from

which the API along with confidence limits can be esti-

mated. Finally, we compare the statistical properties of the

estimates in terms of bias and precision to assess the per-

formance of the imputation methods with respect to each

other. In the following sections, we discuss each step

successively, starting with data generation.

Simulating the complete and observed data

Long-term waterbird monitoring in Flanders

This paper is inspired by our work involving the long-term

monitoring of waterbirds in Flanders, Belgium Waterbird

Monitoring in Flanders (WMF). Volunteers count the

number of wintering birds mid-monthly from October to

March. The first coordinated counts go back to the late

1960s. In 1990, a reorganisation of the project resulted in

an improved standardisation of the methods. In this paper,

we use data that were collected from October 1990 until

March 2014, spanning 24 winters, with data on 1225 sites.

Overall 44 % of the counts are missing. We used this

dataset to obtain sensible parameter values for our simu-

lations. Also, the pattern of missingness is used to simulate

missingness not at random (see section ‘‘Setting the pattern

of missing counts’’ for a definition).

The data generating model for the complete data

We simulate 200 complete datasets consisting of 100 sites

ðnsÞ, 24 years ðnyÞ and 6 months per year ðnmÞ. The counts
follow a negative binomial distribution with mean lijk and
size parameter h (Eq. 7).

The mean lijk is on the log-scale linked to effects of year
i, month j and site k (Eq. 8). The global effect of year i

consists of an intercept b0, a linear trend b1Ti and a random
walk ti (Eq. 9). Together, these terms reflect a long-term

trend with year-to-year variation. The global effect of

month j is a sine wave with a period of 12 months (Mj),

fixed amplitude b2 and variable phase shift /i (Eq. 10). The

sine wave reflects a seasonal pattern allowing for a shift

among the years. The site effect k is a combination of an

intercept bk Eq. (11) and a random walk along the year bik
(Eq. 12). The intercept bk allows for systematic differences

in importance among sites, while the random walk bik
allows the relative importance of the sites to change over

time. �ijk is a random noise term in the log-scale.

Cijk �NBðlijk; hÞ ð7Þ
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logðlijkÞ ¼ b0 þ b1Ti þ ti

þ b2sin 2p
Mj

12
þ /i

� �

þ bk þ bik þ �ijk

ð8Þ

Dti ¼ ti � tiþ1 �Nð0; rrwÞ ð9Þ

/i �Nð/0; r/Þ ð10Þ

bk �Nð0; rsÞ ð11Þ

Dbik ¼ bik � bðiþ1Þk �Nð0; rrw:sÞ ð12Þ

�ijk �Nð0; reÞ ð13Þ

We generate a new complete dataset for each of the 200

simulation runs. The parameters h, b0, b1 and b2 are fixed

for all simulations (Eq. 8). The other parameters are based

on random numbers from independent normal distributions

with zero mean and fixed standard deviation (Eqs. 9–13).

Table 1 specifies the values for the fixed parameters and

fixed standard deviations.

Figure 1 illustrates how API changes over time during

20 runs of the simulation. Each line corresponds to one

complete dataset from which the API can be estimated

directly because the data are complete. Some of the lines

show dramatic changes, while others are quite smooth.

Hence, the choice of model parameters covers a broad

range of possible situations for which we will test the

performance of the imputation methods.

Setting the pattern of missing counts

We refer to Nakagawa and Freckleton (2011) for an

introduction on the differences between missing com-

pletely at random (MCAR) and missing not at random

(MNAR).

First, we implement the MCAR scheme, i.e. the proba-

bility of a count being missing depends neither on observed

nor on unobserved values. Hence, each count has the same

probability of being missing. We can obtain the required

fraction of missingness just by taking a simple random

sample without replacement from the complete dataset. The

fraction of missing observations is set to 0, 1, 5, 25, 50 or

75 % of the number of observations in the complete dataset.

In practice, the assumption of MCAR are likely to be

violated (Nakagawa and Freckleton 2008), especially in a

long-term monitoring project with many volunteers and

many sites. Therefore, we also test an MNAR-pattern based

on the observed missing counts in the WMF [for technical

details, see section A of the Electronic Supplementary

Material (ESM)]. For this scheme, the proportion of

missingness is slightly variable. On average, 56 % of the

counts is missing (range 45–64 %).

The single imputation methods

We first present two commonly used ‘‘single’’ imputation

methods in population monitoring that create an augmented

dataset only once. In the section ‘‘Multiple imputation’’, we

introduce the principle of ‘‘multiple’’ imputation and

implement it for the bird census data. For any imputation

method, an imputation model should be fitted to the

available data (i.e. the observed dataset) in order to predict

the missing observations and augment the observed dataset.

We postpone the definition of the imputation model used

here to the section ‘‘Multiple imputation’’.

Underhill method

Underhill and Prys-Jones (1994) describe the Underhill

method. The construction of an augmented dataset is based

on an iterative algorithm with three main steps repeated

until convergence. These steps are: (1) fit an imputation

model to the augmented dataset; (2) predict with the

imputation model the counts missing and round them to the

nearest integer; (3) replace the previously imputed value

with the new prediction only if the new prediction is larger

Table 1 Choice of h, the regression parameters b and the standard

deviations r in the data generating model (Eqs. 7–13)

Regression Value Standard deviation Value

b0 2 rrw 0.1

b1 0.01 r/ 0.2

b2 1 rs 1

/0 0 rrw:s 0.02

h 2 re 0.01

1000

2000

3000

4000

5000

0 5 10 15 20 25
Year

A
P

I

Fig. 1 Trend in annual population index (API) calculated from 20

simulated complete datasets for the parameters in Table 1 over a

period of 24 years, with 100 sites visited 6 times a year (the winter

months)
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than the previously imputed value; otherwise keep the

previously imputed value.

With the augmented dataset, it is possible to fit the

model (Eqs. 5, 6) to estimate ci and its confidence interval

ðLCLi;UCLiÞ, and, after transformation, API.

The algorithm requires an initialisation of the aug-

mented dataset. Underhill and Prys-Jones (1994) suggest

replacing the missing values with the mean of all available

counts. An alternative is starting from zero. Underhill and

Prys-Jones (1994) use an imputation model with indepen-

dent effects for year, month and site with a quasi Poisson

likelihood, fitted with an expectation–maximisation algo-

rithm. Our imputation model uses the same effects but is

based on a negative binomial regression model (glm.nb).

As acknowledged by Underhill and Prys-Jones (1994),

the third step is susceptible to the introduction of bias

because the algorithm only allows imputed values to

increase. We propose an altered version for which in each

iteration the previously imputed value is replaced with the

new prediction irrespective of its value. For the simula-

tions, we evaluate both alternatives, i.e. the original and

altered, to demonstrate that the altered version is indeed an

improvement.

birdSTATs

We prepared TRIM data files and command files according

to the birdSTATs guidelines (van der Meij 2013). TRIM

cannot handle multiple measurements per year–site com-

bination. The workaround in van der Meij (2013) is to take

the sum of the available counts per year–site combination

and use the inverse of the number of available counts per

year–site combination as weight factor.

We use the estimates in the ‘time TOTALS’ section

from the TRIM output file which are expressed in the

original count scale. In order to be able to compare bird-

STATs with the Underhill method (and the multiple

imputation method, see section ‘‘Multiple imputation’’), we

transform the TRIM output to the log scale with

ci ¼ logðIiÞ, LCLi ¼ logðIi � 1:96 SEiÞ and UCLi ¼
logðIi þ 1:96 SEiÞ with Ii = the ‘Imputed’ parameter for

year i and SEi = the associated ‘std.err.’ parameter.

Multiple imputation

The general principle

The Underhill index and birdSTATs statistical programme

are single imputation methods and, as a consequence,

cannot acknowledge the extra uncertainty associated with

data imputation. In contrast, Rubin (1987) suggests a

general philosophy to assess the imputation variability by

repeating the imputation step L times, yielding L

augmented datasets, from which the parameters in Eqs. 5

and 6 can be estimated L times. Rubin (1987) also provides

the equations for combining the L estimates into one single

estimate and its standard error. For example, for ci:

�ci ¼
1

L

Xl

l¼1

ĉil ð14Þ

�r2i ¼
1

L

XL

l¼1

r̂2i l þ
Lþ 1

L

XL

l¼1

ðĉil � �ciÞ2

L� 1
ð15Þ

The average of ĉil over all L imputation sets is (Eq. 14) an

unbiased estimate of the true index ci. The squared stan-

dard error of this average (�ci) is (Eq. 15) the sum of two

components (Rubin 1996). The first is the average of the

squared standard errors r̂il of the individual ĉil over the L

imputations and is a measure of within-imputation vari-

ability. The second is the variance of the ĉil among the

augmented datasets, i.e. the between-imputation variabil-

ity, multiplied with a correction factor Lþ1
L
. This component

will be large when the imputation step is highly variable.

As the imputation model governs the variability of the

predictions to augment the data, its choice is crucial to

obtaining the correct confidence intervals.

The basic imputation model

With multiple imputation, there is a large flexibility to

construct augmented datasets. A first ‘‘basic’’ imputation

model (Eqs. 16–19) was chosen to make the results com-

parable with the Underhill method and birdSTATs. This

model is a negative binomial generalised linear mixed

model (glmm.nb) with year (b�i ) and month (b�j ) as fixed

effects and site (b�k) as random effect. The observed dataset

is sufficient to fit the model, so no initialisation is

necessary.

Count�ijk �NBðl�ijk; h
�Þ ð16Þ

logðl�ijkÞ ¼ g�ijk ð17Þ

g�ijk ¼ b�0 þ b�i þ b�j þ b�k ð18Þ

b�k �Nð0; r�s Þ ð19Þ

The imputed values are generated in two steps. The first

step is to sample a value pair ðg�ijk; h�Þ from their distri-

butions g�ijk �Nðĝ�ijk; rĝ�ijkÞ and h� �Gammaðbĥ� ĥ
�; bĥ� Þ.

These distributions combine the point estimates ĝ�ijk and ĥ�

with their model uncertainties. The second step is to

sample the imputed value from a negative binomial dis-

tribution with mean l�ijk ¼ eg
�
ijk and size ĥ�. The first step

takes the model uncertainty into account and the second

step the natural variability.
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More complex imputation models

Multiple imputation easily allows the incorporation of

alternative, more complex imputation models (e.g. inter-

actions, covariates, ...). To investigate the effects of the

imputation model, we consider two alternative imputation

models: ‘‘complex’’ and ‘‘true mean’’.

The complex imputation model extends the basic model

(Eq. 18) with two random intercepts, namely, b�ij , the

interaction between year and month (Eq. 20), and b�ik, the

interaction between year and site (Eq. 21). Then g�ijk
becomes Eq. 22. The additional random effects allow the

effects of month and site to change over the years without

assumptions on their relation.

The true mean imputation model is not a model, but uses

ĝijk ¼ log lijk and ĥ ¼ h of the data generating model

(Eq. 7). Such information is of course only available in

case of a simulation study. It is a surrogate for a perfect

imputation model. The standard error will only be affected

by the natural variability of the observations as there is no

model uncertainty.

b�ij �Nð0; r�ymÞ ð20Þ

b�ik �Nð0; r�ysÞ ð21Þ

g�ijk ¼ b�0 þ b�i þ b�j þ b�k þ b�ij þ b�ik ð22Þ

Evaluating the performance of the methods

Each run x of the simulation generates a complete and

observed dataset according to a certain pattern of miss-

ingness. We calculate the API and its confidence interval

for the complete dataset as the reference to compare with

the API derived from the augmented datasets generated by

the imputation methods. Thus, the API on the complete

dataset of run x serves as a performance reference of the

API as calculated by the imputation methods for run x.

We use two quality measures. The first is the bias (Eq. 23).

An unbiased method will have EðBiasÞ ¼ 0. The second is

the relative width of the 95 % confidence interval (RWCI)

(Eq. 24) which assesses the precision. An augmented dataset

should yield more uncertainty than the complete dataset.

More uncertainty translates into wider confidence intervals.

Hence, we expect that EðRWCIÞ[ 1 and RWCI should

increase with the proportion of missing counts in the data.

Biasi ¼ cimethod
� cicomplete

ð23Þ

RWCIi ¼
UCLimethod

� LCLimethod

UCLicomplete
� LCLicomplete

ð24Þ

Amano et al. (2012) combine bias and precision (RCWI)

into a mean squared error (MSE) in order to have a single

performance measure. The downside of this strategy is that

a high bias and low precision might give a MSE similar to

a low bias and high precision. Looking at both the bias and

precision allows for a finer interpretation of the results.

Software

All data were prepared and analysed with R version 3.0.1 R

Core Team (2013) under Scientific Linux 6.1 with pack-

ages MASS (Venables and Ripley 2002) for the glm.nb and

INLA (Rue et al. 2009) for the glmm.nb. TRIM is Win-

dows-only software. Hence, only the preparation and post-

processing of the TRIM files was done in R under Linux.

The actual calculation of the indices used TRIM version

3.53 (Pannekoek and Van Strien 2005) run under Windows

7. The default number of replications L for the multiple

imputation was set to 199.

Results

To facilitate comparison and to minimise the complexity

of the figures, we present only one variant of each

imputation method, unless otherwise specified. We

selected the altered Underhill algorithm because it has a

similar performance in terms of precision and the best

performance in terms of bias. For the multiple imputation

method (Eqs. 16–19), we start with the basic imputation

model to match the complexity of the model as used by

birdSTATs and the Underhill method. With respect to

BirdSTATs, one should take into account that this method

cannot estimate API, but only the yearly average. As a

consequence, bias (Eq. 23) is less an issue. Still, the

length of the confidence intervals (Eq. 24) remains a

meaningful criterion to assess precision.

Overall comparison of the three methods

For an overall comparison of the three methods, we test for

a real life setting, i.e. with an MNAR-pattern as derived

from the WMF.

Bias

Boxplots of the bias for the different methods are given in

Fig. 2a. The (altered) Underhill method has on average the

smallest bias. So our proposal to change the algorithm is

successful (see also Fig. 5). The spread of the bias over the

simulation (width of the box plots) is similar to multiple

imputation. The birdSTATs method yields a positive bias.

This is the result of two effects. First, the API estimates the

population at a reference month. The first month is used as

reference month (section ‘‘The annual population index’’)

608 J Ornithol (2017) 158:603–615
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and the first month has the lowest counts (section ‘‘The

data generating model for the complete data’’). Secondly,

birdSTATs uses a arithmetic mean, whereas API uses an

geometric mean which is smaller than the arithmetic mean.

The multiple imputation method is slightly downward

biased. Further results on this issue can be found section

‘‘The impact of the imputation model’’ where we propose a

more complex and a perfect imputation model.

It is noted here that Figs. 2, 3 and 4 all have one dashed

and two dotted vertical lines. The dashed line indicates the

reference based on the complete dataset, and the dotted

lines indicate arbitrary values based on the range of the

values on x axes in Fig. 4. The sole purpose is to aid the

comparison with Figs. 2 and 3 as the ranges of the x axes in

these latter figures are much wider.

Precision

Boxplots of the relative width of the confidence interval are

shown in Fig. 2b. The (altered) Underhill method strongly

underestimates the width of the confidence intervals by

about 50 % in comparison to the complete data. This

method replaces missing values iteratively with predictions

of the imputation model fitted on the available data. As a

consequence, the variability in the augmented dataset is too

low in comparison to real data. Hence, confidence intervals

calculated on the augmented dataset will be too small. The

birdSTATs tool also leads to a strong underestimation of

the confidence intervals (70 %). The estimate is based on

counts averaged per year-site combination which reduces

the variation in the dataset, again resulting in too small
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Fig. 2 Boxplots of the bias (a) and relative width of the confidence

interval (b) of API for the different methods. Boxplots are based on

200 complete datasets with 24 years, 6 months per year and 100 sites.

On average, 56 % of the counts is missing not at random (MNAR).

The Underhill method uses the alternative algorithm with mean as

initialisation. Multiple imputions uses the basic imputation model

with L ¼ 199 imputations
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Fig. 3 Influence of the proportion of missing completely at random

(MCAR) counts on the bias (a) and relative width of the confidence

interval (b) of API when using either birdSTATs or multiple

imputation with L ¼ 199 imputations from the basic imputation

model. Results are based on 200 simulated complete datasets with 24

years, 6 months per year and 100 sites
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confidence intervals. Multiple imputation outperforms both

the Underhill method and birdSTATs. Yet, the confidence

intervals determined using this method are smaller than

those of the complete dataset. We explore this issue further

in section ‘‘The impact of the imputation model’’ when we

discuss the impact of the imputation model.

Influence of the proportion of missing counts

We excluded the Underhill method from further analysis

because the computational burdenwas very high and it strongly

underestimates the confidence limits (see section ‘‘Precision’’).

We therefore further only compare BirdSTATs and multiple

imputation. To investigate the impact of the proportion of

missingness on bias and precision, we choose MCAR as this

technique is straightforward to set theproportionofmissingness

at a fixed value; this step is harder to control for MNAR.

Bias

The influence of the proportion of MCAR missing counts

on the bias of API when usingeither birdSTATs or multiple

imputation is shown in Fig. 3a as boxplots. On average, the

bias of both methods is not affected by the proportion of

missingness. Multiple imputation is unbiased. The bias of

birdSTATs is explained in section ‘‘Bias’’. The variability

in bias among the simulations increases with the proportion

of missing counts. This increase is stronger for multiple

imputation than for birdSTATs.

Precision

The influence of the proportion of MCAR missing counts

on the relative width of the confidence interval of API

when usingeither birdSTATs or multiple imputation is

shown in Fig. 3b. On average, the confidence limits of

birdSTATs increase with an increasing proportion of

missing counts, but they are much too small. The average

RCWI for 1 % missing counts is 44 %. Note that bird-

STATs uses counts averaged over the 6 months per year.

The standard error of the average of n numbers is 1=
ffiffiffi
n

p
of

the standard deviation of the n numbers. 1=
ffiffiffi
6

p
¼ 0:41,

which is the same magnitude as the RWCI. For multiple

imputation, the width of the confidence intervals is better

but slightly decreases with the proportion of missing data.

A high proportion of missingness implies an augmented

dataset dominated by imputed values, which reduce the

variability.

The impact of the imputation model

In this section, we explore the impact of the imputation

model. Up to now we have chosen the basic imputation

model to evaluate the methods on an equal footing. How-

ever, with multiple imputation, it is straightforward to

adapt and improve the imputation model. This flexibility

allows exploitation of the full potential of multiple impu-

tation. Figure 4 shows a comparison of the basic, complex

and true mean model (section ‘‘More complex imputation

models’’) for two patterns of missingness: MCAR pattern

with 50 % missing counts and MNAR with on average

56 % missing counts.

Bias

As shown in Fig. 4a, the ‘‘true mean’’ model is unbiased.

The two other models indicate a small downward bias for

the observed pattern (on average �0:015). The MNAR
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Fig. 4 Effect of the imputation model on bias (a) and precision (b) when using multiple imputation (L ¼ 199 imputations). Based on 200

simulated datasets with 24 years, 6 months per year and 100 sites
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pattern has several sites with short time series (see ESM

Appendix A). For these sites, extrapolation risks to intro-

duce bias.

Precision

As mentioned in section ‘‘More complex imputation

models’’ the true mean model is only affected by the nat-

ural variation. Hence we assume that the RWCI of the true

mean model reflects the correct value after imputation.

This value is larger than 1 because imputing missing data

increases the uncertainty compared to the complete dataset.

In comparison to the true mean model, the basic imputation

model underestimates the confidence intervals, as shown in

Fig. 4b. The complex imputation model performs better.

Still, the confidence intervals are slightly underestimated,

as any model will always somewhat smooth the true

variability.

Note that, for the true mean model, the width of the

confidence intervals after imputation, assuming 50 %

MCAR, is on average only 12 % larger than those of the

complete dataset. This demonstrates that multiple imputa-

tion model is a very powerful tool.

Comparison of the methods on an example dataset

To obtain more insight and to visualise the implications of

the above evaluation in the original count scale (and not in

the log-scale), we now compare the yearly indices the

different methods with one simulation using a balanced

design consisting of 100 sites, 24 years and 6 months per

year and with counts simulated according to Eqs. 7–13 with

a MCAR-pattern of 25 % (Fig. 5).

We compare the original Underhill algorithm with the

mean as a starting value, the birdSTATs method and

multiple imputation with the basic imputation model

(L ¼ 199 imputations). Both the Underhill method and

multiple imputation assume a negative binomial distribu-

tion for the counts (see Eqs. 5, 16). However, birdSTATs is

based on TRIM which allows only for a Poisson distribu-

tion. To facilitate discussion, we also implemented the

Poisson distribution for the Underhill and multiple impu-

tation methods.

Switching between the Poisson and the negative bino-

mial has a small effect on the estimates of the coefficient—

and hence on the bias. However, the standard error of those

coefficients is larger in the negative binomial model

because it captures overdispersion (Agresti 2002), as

demonstrated by Fig. 5 where the confidence intervals of

the multiple imputation and Underhill method are very

narrow with the Poisson distribution and wide with the

negative binomial distribution.

The panels in Fig. 5 demonstrate that the misspecifica-

tion of the distribution in birdSTATs is an important reason

for the underestimation of the confidence intervals.

A Poisson distribution does not allow for overdispersion,

and in the simulated data there are two sources of extra-

Poisson variability. First, the simulated observations

themselves stem from a negative binomial. In addition,

there is a seasonal effect; hence, within a year the counts

are not uniformly distributed. This seasonal effect also

causes extra variability which is not accounted for by

birdSTATs because just the average over a year is used as

input.

Finally, it should be noted from Fig. 5 that the original

Underhill method overestimates API. Consequently, the
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Fig. 5 Differences in confidence intervals of API based on several

techniques for an example dataset with 24 years, 6 months per year

and 100 sites. Complete Dataset is without missing data, Observed

25 % missing counts (MCAR). Poisson and Negative binomial refer

to the distribution used in the analysis. Multiple imputation uses the

complex imputation model with L ¼ 199 imputations; the Underhill

method uses the original algorithm with the mean as starting value
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correction proposed to replace all imputed values in each

cycle all imputed values, is necessary. In Fig. 2, the altered

Underhill method is unbiased.

Discussion

The choice of the imputation method

Single or multiple imputation

It was not easy to compare the different methods on an

equal footing as each method has its own particularities,

thereby preventing a perfect match. For a fair comparison

of all methods with each other, we started with a ‘‘basic’’

imputation model (Eqs. 16–19) that assumed a constant

effect of year i over all months and sites, a constant effect

of month j over all years and sites and a constant effect of

site k over all years and months.

From these multiple perspectives, the main message is

clear and straightforward. Multiple imputation is capable of

capturing the extra uncertainty caused by the missingness

in the data under different scenarios of missingness

(MCAR and MNAR, increasing proportion of missing-

ness). Even with the basic (and insufficiently complex)

model, the confidence limits are (much) broader than those

of the two other imputation methods, as it should be. In

addition, the multiple imputation approach is very flexible

and allows for improvements in the imputation model, such

that the confidence limits are close to a true mean model.

Underhill method

The original Underhill method (Underhill and Prys-Jones

1994) is biased (Fig. 5), although it is was quite easy to

adapt the algorithm to correct for the bias (Fig. 2; ESM

section B). However, the Underhill method remains a

single imputation approach, resulting in an underestimation

of the variability in the model (Fig. 2).

birdSTATs

In the original setting, TRIM was designed for Poisson

counts with one observation per year–site combination,

with all sites having the same global trend. In this case, the

estimates are unbiased for MCAR. Also, RWCI[ 1 and

increases with the proportion of missing counts (ESM

section C). The situation totally changes in the case of

multiple observations per year–site combination, when

there is seasonality or when overdispersion is present. The

confidence intervals are too small because on the one hand

observations are aggregated and on the other hand sea-

sonality and overdispersion are ignored. In addition,

Amano et al. (2012) state a uniform trend model is a strong

and potentially wrong assumption that could lead to inac-

curate estimates of population indices.

Averaging multiple counts per year–site combination

artificially reduces the fraction of missingness to only those

year–site combinations without any counts at all. For

example, a year–site combination with only one count out of

six is not considered as missing. In addition, the seasonality

in the data is not accounted for; each year–site combination

with one count is treated in the sameway, regardless whether

the count is from the start, middle or end of the season.

The flexibility of multiple imputation

In addition to its excellent statistical properties, multiple

imputation can easily incorporate new elements.

The choice of imputation model

Regarding themultiple imputationmethod, Fig. 4 shows that

the quality of the imputationmodel is important. The critique

of Amano et al. (2012) on assuming the same temporal trend

for all sites applies to imputation models as well. The risk of

bias is not affected by the imputation model, but the width of

the confidence interval is (Rubin 1996). Creating a perfect

imputationmodel-like ‘‘truemean’’ is impossible in practice,

and any practical model will lead to some reduction of

variability in the augmented dataset in comparison to the

complete dataset. A goodmodel capturesmost of the patterns

in the data and will minimise the variance reduction with

respect to the ‘‘true mean’’ model. There is a fine line

between sufficient complexity to describe the patterns

accurately and too much complexity, leading to overfitting

and possibly increased model uncertainty.

The proportion of missing data

The use of multiple imputation is not restricted by the

proportion of missing data. A diminishing number of

observations due to an increased proportion of missing

counts leads to more model uncertainty in the imputation

model, resulting in larger confidence intervals (Fig. 2b;

Nguyen 2016). If the number of observations is too low to

make meaningful statements, the confidence intervals will

be wide. Hence, we can apply multiple imputation

regardless of the number of observations, conditionally by

taking the confidence intervals into account when making

statements on the parameter estimates.

Other parameter estimates

We limited this paper to the estimation of yearly indices,

but the multiple imputation technique can be applied to any
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kind of parameter estimates, such as year maxima,

smoothed yearly indices, pairwise comparison of yearly

indices, linear trends in moving windows, proportion of the

population in special protection areas, among others. Any

analysis which can be performed on a complete dataset can

be applied on an observed dataset after it has been aug-

mented with multiple imputation (Rubin 1996). Therefore,

multiple imputation should be used more often in ecology

in the case of missing observations (Nakagawa and

Freckleton 2008).

Possible extensions and alternatives

Missingness in the covariates

In our comparison we assume that only the counts have

missing data and that all covariates are observed. This is a

reasonable assumption when only using covariates that are

fixed by the design of the monitoring and hence are never

missing. In our case these covariates are site, year and

month of sampling. Nakagawa and Freckleton (2011)

illustrate how missing data in the covariates can be

handled.

Bayesian models

Amano et al. (2012) and Johnson and Fritz (2014) give

examples on how to use Bayesian Hierarchical Models to

estimate indices on population totals. The benefit of the

Bayesian technique is that it handles missing observation

gracefully without the need for imputation. The downside

is that such models tend to be more complex and more

computationally intensive to run. Johnson and Fritz (2014)

make their algorithms available as an R package

‘‘agTrend’’, but unfortunately these cannot handle multiple

observations per year–site combination. Skilled users can

of course write their own algorithms to fit the relevant

Bayesian model and run it in software like BUGS, JAGS,

STAN, among others.

The number of imputations

The computing power in the 1990s and the first decade of

the present century was a bottleneck for computational

intensive methods, such as multiple imputation. Nowadays

vast computing power is readily available. We have suc-

cessfully applied multiple imputation on a single core

machine for datasets with up to 1000 sites and time series

of 24 years with 6 samples per year using L ¼ 199 impu-

tations. The imputation step in the algorithm is a so-called

‘embarrassingly parallel problem’ (Burns 1990). It is

straightforward to run the imputation step in parallel on

multi-core computer systems. Examples on how to do this

can be found in the ‘‘multimput’’ R package (Onkelinx

et al. 2016).

The required computing time depends on two factors:

the size of the design (number of sites, years and months)

and the number of imputations. The size of the design

affects all methods in a similar way. The number of

imputations will determine the required extra computing

time. In this paper, the default number of imputation is

ðL ¼ 199Þ, which is fairly large. This number has hardly

any influence on the bias and only a small influence on the

variance of the relative width of the confidence intervals

(ESM section D). Therefore, a smaller number of imputa-

tion sets can be sufficient.

Graham et al. (2007) recommend running at least L ¼
100 imputation sets when the computational effort is rea-

sonable. For these authors, the required number of impu-

tation sets depends on the proportion of missing data and

on the acceptable level of power falloff. Only L ¼ 3

imputation sets are sufficient with 10 % missing observa-

tions and an acceptable power falloff of \5 %. 70 %

missing observations with an acceptable power falloff of

\1 % require at least L ¼ 40 imputation sets (Graham

et al. (2007), Table 5).

Implementation in R

We provide the code of the paper in the ‘‘multimput’’ R-

686 package to replicate the simulations (Onkelinx et al.

2016), which is freely available on GitHub under a GPL-3

license (https://github.com/inbo/multimput. README

provides installation instructions and some usage exam-

ples). The goal of this package is twofold. First, it allows

other researchers to reproduce our results (Mislan et al.

2016); secondly, a set of more generic functions allow

ecologists to apply multiple imputation on population

monitoring data. The vignette of the package provides

some examples on how to use the package. The

‘‘multimput’’ package still requires some basic ‘‘R’’

knowledge from the user. It has no graphical user interface

(GUI) unlike TRIM (Pannekoek and Van Strien 2005) or

birdSTATs (vander Meij 2013). However, the GPL-3

license of the ‘‘multimput’’ package allows others to build

and distribute a GUI on top of the ‘‘multimput’’ package.

There are other R packages for multiple imput, such as

‘‘Amelia’’ (Honaker et al. 2011), ‘‘mi’’ (Su et al 2011) and

‘‘mice’’ (van Buuren and Groothuis-Oudshoorn 2011). The

focus of the ‘‘multimput’’ package is on generalised linear

mixed models which are not available in the other

packages.
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