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Abstract

Convolutional Neural Networks (CNNs) are statistical models suited for learning complex

visual patterns. In the context of Species Distribution Models (SDM) and in line with predic-

tions of landscape ecology and island biogeography, CNN could grasp how local landscape

structure affects prediction of species occurrence in SDMs. The prediction can thus reflect

the signatures of entangled ecological processes. Although previous machine-learning

based SDMs can learn complex influences of environmental predictors, they cannot

acknowledge the influence of environmental structure in local landscapes (hence denoted

“punctual models”). In this study, we applied CNNs to a large dataset of plant occurrences in

France (GBIF), on a large taxonomical scale, to predict ranked relative probability of species

(by joint learning) to any geographical position. We examined the way local environmental

landscapes improve prediction by performing alternative CNN models deprived of informa-

tion on landscape heterogeneity and structure (“ablation experiments”). We found that the

landscape structure around location crucially contributed to improve predictive performance

of CNN-SDMs. CNN models can classify the predicted distributions of many species, as

other joint modelling approaches, but they further prove efficient in identifying the influence

of local environmental landscapes. CNN can then represent signatures of spatially struc-

tured environmental drivers. The prediction gain is noticeable for rare species, which open

promising perspectives for biodiversity monitoring and conservation strategies. Therefore,

the approach is of both theoretical and practical interest. We discuss the way to test hypoth-

eses on the patterns learnt by CNN, which should be essential for further interpretation of

the ecological processes at play.

Author summary

Species distribution models aim at linking species spatial distribution to the environment.

They can highlight the ecological preferences of species and thus predict which species are
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likely to be present in a given environment. These models are used in many scenarios

such as conservation plans or monitoring of invasive species. The choice of model and the

environmental data used have a strong impact on the model’s ability to capture important

information. Specificaly, state-of-the-art models generally use a punctual environment

and do not take into account the environmental context or neighbourhood. Here we pres-

ent a species distribution model based on a convolutional neural network that allows the

use of large scale data such as spatialized environmental data including the environmental

neighbourhood in addition to the punctual environment. We highlight the interests and

limitations of this method as well as the importance of the environmental context in learn-

ing about species distributions.

Introduction

Species Distribution Models (SDM) characterize the relationship between the environment

and species occurrences, depending on their ecological niches [1]. The ecological niche is mul-

tidimensional, and involves factors playing in a complex fashion (non linear) and at multiple

spatial scales. Therefore, capturing the complexity of ecological niches remains a major chal-

lenge when designing SDMs. For practical reasons (data required), most Species Distribution

Models (SDMs) are correlative methods relating known species occurrence data to potential

environmental predictors [2–7]. Popular examples of such correlative methods include MAX-

ENT (used for instance in [8–10]), random forest (used for instance in [11]) and boosted

regression trees (used for instance in [12–14]).

Some recent SDMs use deep neural networks to better address the complexity of ecological

niches. Devising SDMs based on neural networks is not new [15, 16], but earlier models usu-

ally integrated a single hidden layer network. However, deep neural networks architectures are

suited to efficiently approximate hierarchical functions which compose local constituents

functions, i.e. with low dimensional input [17]. For such response functions, it exists a theoret-

ical guarantee that deep neural network architectures outperform one layered architectures,

i.e. they yield higher statistical generalization power. Recent advances in deep learning have

allowed training much deeper neural networks and acknowledging more complexity in the

way environment shapes ecological niches [18]. Key advantages of deep learning are that (i) it

allows characterizing complex structuring of ecological niche depending on multiple environ-

mental factors, (ii) it can learn niche features common to a large number of species, and thus

grasp the signatures of common ecological processes and improve SDM predictions across

species [18, 19].

A specific class of neural networks initially proposed in [20], named Convolutional Neural

Networks (CNN), has very recently been proposed for SDM [19, 21]. A specific property of

CNN is that they rely on spatial environmental tensors rather than on local values of environ-

mental factors. These tensors represent the spatial realisation of environmental factors around

each point. Unlike other SDM approaches, CNN-based SDMs (CNN-SDMs) can use this very

large input data and therefore potentially capture richer information than in punctual vectors.

CNNs were originally designed for image classification [20] and proved to outperform any

other statistical or machine learning methods in the task of learning complex visual patterns.

Indeed there architecture is based on small visual filters that can learn to recognise structural

patterns in high dimensional input data such as images. CNN-SDMs should thus be suited to

represent how complex ecological niches and spatial dynamics determine the distribution of

many species in a region. [19, 21] have shown that CNN-SDMs can improve predictive
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performance in SDMs compared to punctual models (models using punctual vectors of envi-

ronmental data instead of tensors).

We hypothesized that a higher predictive ability of CNN-SDMs should result from the fact

that they can grasp the influence of habitat availability, spatial heterogeneity and spatial struc-

ture the environment around location, apart from the environmental conditions at the precise

location. To test this hypothesis, we designed a set of experiments in which the neural network

used or not specific features in the local landscape, such as the spatial structure of environmen-

tal variables, or their variability. Moreover, we qualitatively analysed the neuron activations

(i.e. the numerical realisation obtained for a given input) of the last layer of the network, from

which the final linear predictor is built. This is done by mapping each neuron in the geographi-

cal space.

Based on the results of the experiments, the main insights we provide here are:

1. the main strength of convolutional neural networks (CNN-SDM) is to provide more reli-

able predictions for the vast majority of species having only few occurrences in the training

set.

2. CNN-SDMs allow capturing the spatial structure of the local environment that is richer

than just the local statistical distribution of environmental values and that the use of this

information explains in large part the predictive superiority of these methods.

Materials and methods

Dataset

We analyzed a large presence-only dataset built from the Global Biodiversity Informatics Facil-

ity (GBIF, GBIF.org (31 October 2018) GBIF Occurrence Download https://doi.org/10.15468/

dl.l4ofpm). It includes 97, 683 occurrences over the French territory, for 4520 plant species

which names follow the TAXREF taxonomic reference [22] from the French National Inven-

tory of Natural Heritage [23]. Uncertainty in spatial locations varies from few meters up to

10km. We randomly split the species occurrences into training (90%) and test (10%) sets. In

addition, 10% occurrences from the training provided a validation set. For more details on the

dataset construction protocole refer to the supporting information S1 Protocole. Fig 1 shows

the distribution of the number of occurrences by species, with very few frequent species and

many rare species, yielding a long-tail distribution.

We use 33 environmental raster variables over the French territory (Table 1), including cli-

matic, soil, elevation and land cover variables as predictors in species distribution modelling.

We split the categorical land cover variable into 45 different layers each describing the pres-

ence (1) or the absence (0) of a land-cover class at a given pixel. We then obtained 77 input

dimensions instead of 33. Furthermore, rasters contains sea pixels and other undefined values

that should be attributed a numerical value. To avoid as much as possible potential errors

related to this constraint, we chose a value sufficiently distinct from the other values, here we

choose a value under the minimum of the values of valid pixels.

For performing baseline punctual models, we extracted a punctual environmental vector

for each occurrences. For performing CNN, we defined spatialized environmental tensors as

following. For a given position and a given environmental variable, we first define a matrix

including the variable values in 64 × 64 pixels around the position. The matrices of the envi-

ronmental variables are then aggregated into a single 3-dimensional tensor. Thus, for each

species occurrence, we obtain an environmental tensor of size 64 × 64 × 77. Note that the geo-

graphical extent of each layer of the tensor depends on the resolution of the raster (for
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instance, the pixels’ resolution corresponds to a 1 km square for the bioclimatic variables, but

to a 30 m square for the water proximity). Fig 2 represents an example of such tensor.

In order to be able to compare our predictions for some species with a larger test set we also

use INPN occurrence maps for the respective species. These maps are publicly available for

each species on the INPN website [23].

Species distribution models

Since the data set consists of presence-only observations (with no absence data), the model

predictions cannot be probabilities of species presence. Some methods in the literature pro-

pose the use of pseudo-absences or background models, but it is known that these methods

can lead to significant biases [24, 25]. In order to avoid such biases, we propose to work on

another type of model than classical Stacked-SDMs [26], Joint-SDMs [27] or multi-species

SDMs [28] found in the literature. Rather than predicting the probability of the presence of a

species at a given location, the models studied aim at predicting the probability of the species

conditionally to the fact that a plant has been observed at a given location. Thus, the output of

the models takes the form of a categorical distribution over all possible plant species and the

sum over all the species is equal to 1. More formally, given a set of observations D and an

observation i 2 D, the prediction ŷðiÞ is a vector of size m (m = 4520, the number of species),

each component ŷsðiÞ being the probability that the species of i is s. The probabilities ŷsðiÞ can

then be sorted to obtain a ranked list of the species most likely to occur at a given location.

Such type of predictions is useful for a variety of purposes (identification, conservation, pros-

pecting planning, etc.) and is less sensitive to observation bias (in particular, it does not require

absence or pseudo-absence data). In the following sub-sections, we describe in detail the differ-

ent models studied using this paradigm, starting with the CNN (allowing to model the spatial

structure) and then moving on to the baseline punctual models.

Deep convolutional neural network (CNN-SDM). The main objective of a deep convo-

lutional neural network is twofold. Given some input data x (in our case a 64 × 64 × 77

Fig 1. Occurrences’ distribution. Distribution of occurrences in the training set (including validation set), species are

ordered by frequency.

https://doi.org/10.1371/journal.pcbi.1008856.g001
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environmental tensor), it first applies non-linear transformations of the data z = ϕ(x), to get a

new vectorial representation (henceforth called “feature vectors”) of lower dimensionality. Sec-

ond, it fits a generalized linear model to predict the target value ŷ ¼ f ðzÞ (here the conditional

probability of species given an observed plant specimen) as a function of the new representa-

tion. Since the model is optimized for all species jointly, the learnt representation space z =

ϕ(x) is common to a large number of species, which stabilizes predictions from one species to

another and improves them globally. A deep convolutional neural network is thereby a com-

position of these two functions:

ŷ ¼ ðf � �ÞðxÞ ð1Þ

Both functions are fitted jointly during the training process.

Table 1. Environmental variables and description.

Name Description Nature Value Resolution

CHBIO_1 Annual Mean Temp. (mean of monthly) quanti. [-10.7,18.4] 1km

CHBIO_2 Max-temp—min-temp quanti. [7.8, 21.0] 1km

CHBIO_3 Isothermality (100�CHBIO_2/CHBIO_7) quanti. [41.1,60.0] 1km

CHBIO_4 Temp. seasonality (std.dev�100) quanti. [302.7, 777.8] 1km

CHBIO_5 Max Temp of warmest month quanti. [6.1,36.6] 1km

CHBIO_6 Min Temp of coldest month quanti. [-28.3,5.4] 1km

CHBIO_7 Temp. annual range quanti. [16.7,42.0] 1km

CHBIO_8 Mean temp. of wettest quarter quanti. [-14.2,23.0] 1km

CHBIO_9 Mean temp. of driest quarter quanti. [-17.7,26.5] 1km

CHBIO_10 Mean temp. of warmest quarter quanti. [-2.8, 26.5] 1km

CHBIO_11 Mean temp. of coldest quarter quanti. [-17.7, 11.8] 1km

CHBIO_12 Annual precipitations quanti. [318.3,2543.3] 1km

CHBIO_13 Precipitations of wettest month quanti. [43.0,285.5] 1km

CHBIO_14 Precipitations of driest month quanti. [3.0,135.6] 1km

CHBIO_15 Precipitations seasonality (coef. of var.) quanti. [8.2,57.8] 1km

CHBIO_16 Precipitations of wettest quarter quanti. [121.6,855.6] 1km

CHBIO_17 Precipitations of driest quarter quanti. [19.8,421.3] 1km

CHBIO_18 Precipitations of warmest quarter quanti. [198,851.7] 1km

CHBIO_19 Precipitations of coldest quarter quanti. [60.5,520.4] 1km

etp Potential evapo transpiration quanti. [133, 1176] 1km

alti Elevation quanti. [-188,4672] 100m

awc_top Topsoil available water capacity ordinal {0,120,165,210} 1km

bs_top Base saturation of the topsoil ordinal {35,62,85} 1km

cec_top Topsoil cation exchange capacity ordinal {7,22,50} 1km

crusting Soil crusting class ordinal [0, 5] 1km

dgh Depth to a gleyed horizon ordinal {20,60,140} 1km

dimp Depth to an impermeable layer ordinal {60,100} 1km

erodi Soil erodibility class ordinal [0, 5] 1km

oc_top Topsoil organic carbon content ordinal {1,2,4,8} 1km

pd_top Topsoil packing density ordinal {1,2} 1km

text Dominant surface textural class ordinal [0, 5] 1km

proxi_eau_fast <50 meters to fresh water boolean {0,1} 30m

clc Ground occupation categorial [1, 48] 100m

https://doi.org/10.1371/journal.pcbi.1008856.t001
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Categorization tasks based on neural networks are usually performed with a multinomial

logistic regression, i.e. by defining f(�) as a linear model followed by a softmax link function:

ŷs ¼ fsðzÞ ¼
ebs :zþas
P

je
bj:zþaj

ð2Þ

where βs and αs are the parameters of the linear model learned for species s and the fss repre-

sent the categorical probabilities over the set of species (conidtionally to an observation).

Fig 2. Tensor example. Example of tensor extracted from the 33 variables (latitude: 48.848530, longitude: 1.939530). Artificial colors from

purple (lowest value) to yellow (highest value).

https://doi.org/10.1371/journal.pcbi.1008856.g002
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For ϕ(�), we chose the Inception v3 architecture [29], with a dropout regularization [30].

This architecture is usually used for image classification, and should be suited to grasp the

multi-scale and hierarchical nature of biodiversity patterns. We tested this architecture against

alternative options on the validation set, and found it to be the best. The Inception v3 architec-

ture ends up with a feature vector z of size 2048 (to be compared with the 315, 392 dimensions

of the input data). Since the feature vectors z are used as input co-variables of the species pre-

diction fs(z), they are likely to represent synthetic spatial patterns reflecting macroecological

and biogeographical structuring common to the selected species. Therefore, the z can also be

used further for ecological modelling or prediction tasks.

To fit the model, we used a cross-entropy loss function classically designed for multinomial

logistic regression:

Lðŷ; yÞ ¼ �
XK

k¼1

yi log ŷi ð3Þ

where ŷs ¼ fsðzÞ is the categorical probability of species s given by the model, and ys is 1 if spe-

cies s is the correct one and 0 otherwise.

We used a Stochastic Gradient Descent (SGD) to get estimated parameter values, with a

decreasing learning rate policy starting at 10−1, and divided by 10 before epochs 90, 130, 150

and 170. Dropout was set at 0.7 and momentum at 0.9. We processed validation every 5

epochs, and the final model was the one with the highest validation score.

Punctual deep neural network (DNN-SDM). We compared the CNN-SDM approach to

an alternative deep but non-convolutional neural network model that do not acknowledge spa-

tial patterns around species locations. This model, called DNN-SDM, is a punctual model

using environmental vectors (instead of the environmental tensors for the CNN). For sake of

comparison, we kept the same architecture as CNN-SDM model, so that differences in perfor-

mance should be due to the nature of predictors and the way models extracted relevant infor-

mation from them. Since the architecture requires 64 × 64 tensors as input, we designed

tensors in which for each layer the central value (the value at the point of the occurrence) is

repeated on all pixels of the layer. We used the same training procedure as for CNN-SDM, but

with a dropout set to 0.5.

Boosted trees (BT). We compared the above models to a state-of-the-art boosted tree

model. Gradient tree boosting or boosted trees (BT) are a category of gradient boosting algo-

rithms based on decision trees. Simple decision trees are used in ecology [31], because they

have two main advantages: (1) they allow to easily take into account data of different types

(integers, booleans, reals, categorical, etc.), (2) they are relatively easy to interpret in most

cases. BTs correct the low predictive power of single decision trees by the boosting method.

BTs have been commonly used in recent years in ecology for their performance [14, 32–34].

Several studies have shown that they provide significant performance gain compared to previ-

ous state-of-the-art models [13, 35]. Here we used the gradient tree boosting algorithm imple-

mented within the xgboost python package [36]. We parameterized our model with a tree

depth of 2.

Random forest (RF). We also compared CNN-SDM models to the popular Random For-

est (RF) approach. RFs have proved efficient in many SDM studies [11, 32, 37–41]. Like

boosted trees, RFs are based on decision trees. Their interpretation is less straightforward than

a single decision tree, but it is possible to assess the importance of each input variable relative

to the others. Moreover, RFs are known to have good predictive performances. Here we used

the random forest algorithm implemented within the scikit-learn framework [42]. For hyper-

parameterization, we used 100 trees with a maximum depth of 16.
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Evaluation

As the models studied in this paper are not classical SDMs, the usual metrics (AUC, TSS, etc.)

are not necessarily the most suitable. The output of the model is actually a categorical probabil-

ity distribution, i.e. the probability of the species conditionally to an observation. A classic met-

ric for such predictions is the accuracy, i.e. the percentage of observations for which the

correct species is predicted. However, this metric is not adapted to the fact that several species

can be observed at the same location. It is therefore preferable to use a set-valued version of

the accuracy such as the top-k accuracy index, i.e. the probability that the true species of the

observation belongs to the set of k species predicted as most likely by the model. This top-k
accuracy is averaged per species (using only the occurrences of each species), and then across

species. More formally, for an observation i 2 D, we defined as ri the rank of the true species

of i in the sorted list of the estimated probabilities ŷsðiÞ. And for k� 1, we defined the top-k
accuracy as:

Ak ¼

Pn
i AkðiÞ
n

ð4Þ

with n is the number of occurrences in the test set and

AkðiÞ ¼

(
1 if ri � k

0 else
ð5Þ

To avoid giving too much weight to the most frequent species, it is preferable to evaluate

the models in terms of scores per species and not per occurrence. Therefore, we defined the

species-wise top-k accuracy for a particular species s as:

SAk;s ¼

Pj
i AkðiÞ
j

ð6Þ

With j the number of occurrences of species s in the test set. Then we defined the mean top-k
accuracy per species by:

MSAk ¼

Pn
s SAk;sðmÞ

n
ð7Þ

with n the number of species in the test set.

In addition to this primary evaluation metric, we evaluated two other more traditional met-

rics, the area under curve (AUC) and the true skill statistics (TSS). This additional assessment

allows us to compare our metric with those more commonly used in the literature on SDM. In

order to use these metrics, we must first define a choice for the generation of the pseudo-

absence. Since our data set is highly unbalanced, a uniform random sampling of the occur-

rences of the other species would result in over-representation of the most frequent species. As

these species are often those with the widest or least specific distributions, this choice would

penalize the evaluation of other species that may share certain environments where they are

present. To avoid this, we proceed to a weighted sampling over the occurrences, each occur-

rence being weighted by the inverse of the total number of occurrences of the same species in

the test. The sum of the weights of all occurrences of a species is then 1. This is equivalent to

first select a species at random and then randomly sample one occurrence of this species. For

each species, the sampling of pseudo-absence occurrences is done without replacement (i.e.
one occurrence cannot be used as a pseudo-absence two times for the same species). To
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balance the number of presences and pseudo-absences, we sample a pseudo-absence for each

presence. Each species then has the same number of presence and pseudo-absence.

Evaluation via the AUC or TSS does not require species prediction to be categorical or

rank-based (unlike our primary metric). It is therefore not necessary to compute them on the

main output ŷ of the CNN model. We can rather use the values of the logits βs.z + αs computed

by the model before the softmax operator (see Eq 2). The global dynamics of these values is not

directly reliable for a prediction of probability of presence or density. However, they are more

likely to represent the habitat suitability of each species separately than the categorical proba-

bilities ŷs. For the RF model, it is not possible to use the same methodology since such logits do

not exist. Thus, by default, we used directly the categorical probabilities ŷs to compute the

AUC and TSS metrics for that model.

To compute the mean AUC per species (MS_AUC), we first compute the AUC score of

each species s based on either the logit value βs.z + αs (for the CNN) or ŷs (for RF), then we

average the AUC values over all species.

Concerning the mean TSS per species (MS_TSS), a similar but slightly different procedure

is used. We first scaled each species predictions values to be between 0 and 1. This is done with

a min-max scaler on each species over all test set occurrences. This is necessary for the use of

logits as predictions value for the CNN because their range is not known and we need to vary a

threshold between the min and the max. For the RF, even if the value returned are already

probabilities between 0 and 1, they are relative probability with totally different dynamics than

a probability of presence. To evaluate each species with the TSS score we need to limit this

effect. The min-max scaler transform the value between 0 and 1 that is not directly reliable to a

prediction of presence but that allows to have a comparable range of values across species.

Finally, to obtain the MS_TSS score we vary the decision threshold (between 0 and 1) for

which we consider that the model predicts the presence of the species and we keep the thresh-

old that gives the highest score for each model.

Ablation study

Unlike punctual environmental vectors, environmental tensors contain information about the

environment within the spatial neighborhood. To better identify how this information is used

by CNN-SDM, we have developed ablation experiments. During these experiments we

degrade the information contained in the input tensors and we learn the model on these

degraded tensors. The impact of the degradation on the performance is directly measured on

the final score of the trained model. Ablation is a straightforward way to investigate causality

in complex systems such as deep neural networks, by evaluating the contribution of specific

characteristics to the overall explanation. We used the approach to examine the value of spatial

structuring information learnt by CNN-SDMs, in addition of the environmental information

captured by classical SDMs. For each model learnt with an ablation transformation, the trans-

formation is applied at each tensor (i.e. for each occurrence) during learning and testing. Fig 3

provides an illustration of the various transformations presented below.

Random rotations. The first transformation is a random rotation of the input tensor x in

one of the four possible spatial directions (i.e. 0˚, 90˚, 180˚ and 270˚). It is applied on all layers

with the same rotation and on each occurrence, so that the network cannot acknowledge the

actual orientation.

Random permutations. For this ablation, the transformation of the tensors carried out is

a random permutation of the pixels of each layer of the tensors. Again, the transformation is

applied to each layer of each tensor (ie. for each occurrence). The spatial structure of the

PLOS COMPUTATIONAL BIOLOGY Convolutional neural networks improve species distribution modelling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008856 April 19, 2021 9 / 21

https://doi.org/10.1371/journal.pcbi.1008856


environment contained in the tensors is destroyed but the variability of local environmental

values is preserved.

Mean value. This ablation consists in averaging each tensor layer. As for DNN-SDM, the

layers keep the same dimension (64 × 64) but all pixels are identical equal to the average value

before transformation. The CNN is then deprived of the information about the spatial struc-

ture and variability of the environment initially contained in the tensors. This model uses

exactly the same information than a classical punctual SDM model (such as DNN-SDM, BT

and RF), but with a spatial regularisation by averaging over the neighborhood. It can thus be

compared to the results of DNN, where only punctual environmental values are used, to assess

the extent to which the model is sensitive to local environmental value against coarser-grained

environmental information.

Structure only. The above ablation tests degraded the information about the spatial struc-

ture contained in the tensors (spatial structure of the environment around an occurrence).

Here we have designed an inverse experiment that retains the information about the spatial

structure of the tensors but does not take into account the numerical realization of the envi-

ronmental values. To achieve this degradation, we apply a standardization to all layer of each

environmental tensors. This therefore consists in removing the mean value of the layer and

dividing by its standard deviation. CNN then no longer has information about the mean and

variance of the local environment around the occurrence. For example, for the altitude, this

transformation is equivalent to keeping the spatial shape of the relief (as seen from above)

while removing the link with the real altitude and its amplitude.

Fig 3. Ablation study transformations. Illustration of the ablation study transformations on one layer of a tensor.

Artificial colors from purple (lowest value) to yellow (highest value). The standardization transformation is in shades

of gray to illustrate the deprivation of true environmental values. The colors of the names correspond to the colors of

the respective curves in the results.

https://doi.org/10.1371/journal.pcbi.1008856.g003
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Qualitative analysis of the features learnt in CNN-SDMs

We examined the information encoded in the features (i.e neurons) learnt by the neural net-

work. More precisely, we analyzed the last layer of the network (z = ϕ(x)), i.e the one on which

the final linear predictor f(�) was learnt. The neuron activation values zj could be interpreted as

meta-descriptors of the environment, i.e., as latent variables encoding environmental informa-

tion used by the final linear predictor. To make the interpretation of these features easier, we

mapped them in geographical space. We mapped the features across a spatial grid of 1km-by-

1km quadrats over French territory, with neuron activation values zq = ϕ(xq) calculated at the

center of each quadrat q. The zq values were then averaged over larger 10km-by-10km squares,

yielding 5400 pixels s with average activation zsi for a particular neuron i.
We examined the spatial structure of these maps for further interpretation of their environ-

mental and/or geographical nature. For instance, if a neuron was only activated at a specific

location, the model likely learnt specific conditions at that location from the set of environ-

mental tensors. If the neuron was activated in large or disjointed areas, it could represent a

broader-scale patterns beyond specific local conditions. Such patterns could then represent

biogeographic or macro-ecological regions driving species distributions at broad scale.

Results

Better predictive performance of CNN-SDMs

Fig 4 compares the predictive performance of the four models, in terms of mean top-k accuracy
per species for k 2 [1, 100] (see section). The CNN-SDM model performed better than alterna-

tive punctual models, including DNN-SDM (for all mean comparison for all k between the

CNN and another model the p-value is under 0.001). Since DNN-SDM and CNN-SDM mod-

els had the same architecture, the performance gain was due to additional information con-

veyed by spatial environmental tensors, compared to using punctual vectors.

Fig 4. Performances comparison. MSAk of CNN-SDM, DNN-SDM, RF and BT for varying k values within [1, 100].

https://doi.org/10.1371/journal.pcbi.1008856.g004
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Better performance of CNN-SDMs for rare species

Fig 5 shows the performance achieved by the four models per species ordered by decreasing

number of occurrences in the training set (using SA30,s). RF and BT models performed better

for the most frequent species (which represent the majority of occurrences). However, the

CNN-SDM model proved better for less frequent species, which are much more numerous but

represent a small proportion of occurrences. As an illustration of this generalization capacity,

Figs 6 and 7 displays the predicted responses functions of two species having only one occur-

rence in the training set. This was done by plotting the predicted linear response βi.z + αi of

each of the two species on a 1 km grid (averaging on a 10km grid for display). For comparison

purpose, we also provide for each species a snapshot of the occurrences map publicly available

on the web platform of the French National Inventory of Natural Heritage (INPN), managed

by the French National Natural History Museum (MNHN). For the two species, the distribu-

tion predicted by the CNN-SDM model fitted very well the INPN occurrences (although only

Fig 5. Performances on rare species SA30 of CNN-SDM, DNN-SDM, RF and BT for each species. Species are sorted

by decreasing number of occurrences in the training set. An adaptive moving average was applied to smooth the

curves.

https://doi.org/10.1371/journal.pcbi.1008856.g005

Fig 6. Prediction of Senecio cacaliaster Lam., 1779. Compare the model prediction to the French National Inventory

of Natural Heritage (INPN) occurrences map for Senecio cacaliaster Lam., 1779.

https://doi.org/10.1371/journal.pcbi.1008856.g006
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one occurrence was used for training the response functions of that species). For Senecio caca-
liaster the CNN-SDM model seems to have somewhat over-generalized the realized niche.

Indeed, it can be seen a little activation in the Pyrenees mountains whereas the INPN occur-

rences, in accordance with the knowledge on this species, only fall in the central massif. This

over-generalization, however, illustrates how the CNN-SDM model is capable of transferring

knowledge across species, even with an extremely low number of occurrences.

High variability of AUC and TSS

As explained earlier, in addition to the primary evaluation metric, we evaluated two other

more traditional metrics, the area under curve (AUC) and the true skill statistics (TSS). This

additional assessment was performed only for the CNN and the RF model since the perfor-

mance of the two other models were significantly lower with the primary metric.

Table 2 and Fig 8 summarizes the results of AUC and TSS evaluations for the CNN-SDM

and RF. We can see in Table 2 that the MS_AUC is very similar for both models with a score

around 0.80. However, Fig 8 shows that there is a high variability across the species. The

majority of species have very high AUC value but many species also have low AUC values,

sometimes below 0.5. It is important to note here that 36% of the species in the test set only

have 1 occurrence. For such species the AUC can only be 0.0 or 1.0 and thus has a very high

variance. Similarly, species with 2 or 3 occurrences in the test are numerous (30%) and have a

high variability in the estimation of the AUC. If we compare the boxplots of the AUC scores

for the CNN and RF, we can see that the median, first quartile and last quartile are better for

the CNN. Only the outliers lead to lower AUC values for the CNN and tend to bring the aver-

age value to that of RF. Similar conclusions can be formulated for the TSS as shown in Fig 8.

For most species, the TSS score can only take a few possible values (1.0, 0.5, 0.0 or -1.0) which

explains why the boxplots of both the CNN model and the RF model are aligned with these

values.

Fig 7. Prediction of Delphinium dubium (Rouy & Foucaud) Pawl., 1934. Compare the model prediction to the

French National Inventory of Natural Heritage (INPN) occurrences map for Delphinium dubium (Rouy & Foucaud)

Pawl., 1934.

https://doi.org/10.1371/journal.pcbi.1008856.g007

Table 2. CNN-SDM and RF evaluations with AUC and TSS.

Metric CNN-SDM RF

MS_AUC 0.818 0.808

MS_TSS 0.450 0.459

https://doi.org/10.1371/journal.pcbi.1008856.t002
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Acknowledging spatial structure of environmental tensors in CNN-SDM

improves performance

Fig 9 shows the results of ablation tests. The same CNN architecture was used to train models

on different tensors transformations keeping or not the environmental variation and its envi-

ronmental structure in the neighborhood of each location. The best model is the one learnt on

the original tensors keeping these information. In addition, the model learnt on rotated tensors

performed a little less well up to the MSA40, but was similar above. Behind these two models,

Fig 8. AUC per species. Boxplots of AUC and TSS of CNN-SDM, and RF for all species.

https://doi.org/10.1371/journal.pcbi.1008856.g008

Fig 9. Results of ablation study. Results of the CNN with different tensor transformations in the ablation study: MSAk
of the ablated CNN-SDM model deprived for k values within [1, 100].

https://doi.org/10.1371/journal.pcbi.1008856.g009
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the model based on standardized tensors was less performing but still better than the three last

ones. The three worst performing models were those based on constant tensors, on permuted

tensors and the DNN.

Activation maps

Figs 10 and 11 each show the activation map of 9 neurons. Fig 10 shows activation maps of

neurons with diverse spatial signatures. The activation of these neurons is spatially circum-

scribed to specific geographical areas, reflecting macroenvironmental or biogeographical Fea-

tures. For examples neuron 1831 is activated in the Alps, neuron 1471 on coastal areas, and

neuron 77 in the northernmost region. Fig 11 in contrast shows activation maps of neurons

more difficult to interpret.

Discussion

This study focuses mainly on the analysis of Convolutional Neural Network (CNN) models for

the prediction of plant distribution. To be sure that this analysis is of interest we first validate

our model against other more used models such as Boosted Trees (BT) and Random Forest

(RF). We also compare the CNN to a similar Deep non-convolutional Neural Network

(DNN). The main metric proposed is the mean top-k accuracy per species. This metric is

adapted to our dataset that is presence-only, large scale (large area and numerous species) and

highly unbalanced between species according to a long tail distribution. We also provide the

Fig 10. Activations maps highlighting large scale geographical shapes. Example of 9 activation maps, for 9 different

neurons, among the 2048 neurons of the final layer of the CNN-SDM that shows large scale geographical shapes. The

number of the neuron is indicated above each map.

https://doi.org/10.1371/journal.pcbi.1008856.g010
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evaluation of the CNN and the best ponctual model, the RF, on more usual metrics, AUC and

TSS. The main limitations of these metrics are (i) the bias induced by the generation of the

pseudo-absence data and (ii) the irrelevance of the assessment for the species with the fewest

occurrences, particularly those with only one or two occurrences. The results of CNN and RF

were close using these metrics. In particular, CNN and RF achieved similar scores for the

mean AUC over all species. The boxplot of the species-wise AUC values revealed that CNN is

indeed better for most species but that outliers tend to degrade the mean value. These results

highlight that the usual metrics for SDM (AUC, TSS, etc.) are not necessarily the most suitable

for the type of model we are studying. The choice of pseudo-absences can artificially affect the

score of models. In our context this choice is particularly difficult, the sampling effort is highly

non uniform spatially and the long tail distribution results in very few observations for lots of

species. Our choice of pseudo-absences is made in order to have less bias as possible but the

remaining bias are still difficult to evaluate. In particular, the choice of other species occur-

rences as pseudo-absences can affect more the species with large distributions or the species

present in habitat with high species richness. In the context of multi-species models these eval-

uations may penalize a model whose strength is to identify coherent groups of species. In addi-

tion, our models are designed for presence-only data and optimized to predict categorical

conditional probabilities and not presence probabilities. This can be easily adapted for the

CNN due to its functioning which produces an individual linear model for each species at the

last layer of the network. This layer of logits then allows a prediction for each species that

depends on the other species globally (through multi-species learning) but does not depend

Fig 11. Activations maps that do not highlight a particular geographical shape. Example of 9 activation maps, for 9

different neurons, among the 2048 neurons of the final layer of the CNN-SDM that do not highlight a particular

geographical shape. The number of the neuron is indicated above each map.

https://doi.org/10.1371/journal.pcbi.1008856.g011
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directly on the prediction of the other species at a given spatial point. This is not possible for

the RF model which is a classifier and which directly returns the relative probabilities. To limit

this effect it is possible to use scaling to return predicted values between 0 and 1 for each spe-

cies but the values obtained remain dependent on the values of the other species. For all these

reasons we then choose to use the mean top-k accuracy per species as the main evaluation met-

ric for the type of models studied. This metric has two main advantages: (i) it is not biased by

the spatial distribution of the observation effort (because it is based on the species probability

conditionally to an observation) and (ii), it allows evaluating the ability of the model to predict

coherent groups of species jointly. We believe this metric is also not perfect either because the

size of the set of species observable at a given location can be variable. Therefore, in future

work, we plan to work on a more adaptive version of sets prediction evaluation (as for instance

studied in [43]).

Our experiments first confirmed previous results of the literature that CNN-SDMs perform

better than state-of-the-art methods such as boosted trees or random forest, but also than

Deep Neural Networks using punctual environmental information (DNN-SDMs).

DNN-SDMs were based on the same architecture than CNN-SDMs, but were blind to envi-

ronmental neighborhood in the landscape surrounding occurrence points. Therefore, the

environmental neighborhood more than the punctual environment matters for prediction.

The performance is especially greater for rarer species in the dataset, while CNN-SDMs were

less efficient than boosted tree and random forest for more frequent species. This central result

is of both theoretical and practical interest, as rare species (often with narrow geographical dis-

tributions and specialized habitat requirements [44]) are more numerous, notoriously more

difficult to predict, and important for conservation and management. There is a long debate

on the way spatial autocorrelation in species distributions arises from both environmental

structure and species dynamics [45, 46], and on how space should be acknowledged in the

analysis of biodiversity patterns [47]. The CNN-SDM is based on environmental tensors,

which represent not only the punctual environmental conditions of the sampled sites, but also

the surrounding environmental conditions and their spatial structuring. To better understand

what information contained in the surrounding environment allows a performance gain to the

CNN-SDM we designed an original benchmark of alternative CNN-SDMs based on trans-

formed tensors, each discarding either landscape-level spatial structure or heterogeneity in

environmental factors. The comparison of these CNN-SDMs allowed identifying which infor-

mation contained in the tensors improved predictive power. CNN-SDM calculated on

unmodified tensors outperformed all CNN-SDMs learnt on transformed tensors. In particular,

the CNN-SDM calculated on unmodified tensors is better than the CNN-SDMs learnt on per-

muted or averaged tensors. The comparison underlines that not only the average or the vari-

ance of the environment in the landscape, but also its spatial structuring matters. This result is

confirmed by the model learned on standardized tensors (structure) which is better than the

models learned on permuted or averaged tensors showing that the spatial structure is equally,

if not more important than the value of the environment for the model. The fit of CNN-SDMs

on real tensors could thus grasp the landscape-level influence of both environmental local val-

ues and spatial structuring. CNN-SDMs could get significant predictive power by acknowledg-

ing spatial structuring of environment around locations, i.e., the local landscape structure.

These results support the role of landscape-level ecological processes in shaping species dis-

tributions. Specifically, the spatial structure of habitat fragmentation [48] and the amount of

favorable habitat [49] in the landscape can both influence population persistence at given sites

[50]. Better predictive ability of CNN-SDMs indeed supports the role of such landscape-scale

drivers on species occurrences. For instance, for a binary predictor, the average in the land-

scape could represent available habitat amount, while the spatial structure of the landscape
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could acknowledge the role of connectivity. Using different landscape configurations in CNN

could help testing these alternative hypotheses and underline the potential of the approach for

testing theories in spatial ecology.

Only the performance of the model on rotated images is close to the one of the CNN-SDM

based on real environmental tensors. We can however note a difference between MSA1 and

MSA40 where the model with rotated image is worse. Our interpretation is that the landscape-

level orientation (e.g. north slope vs. south slope) has an impact on some species but is not the

most important structural information contained in the tensors.

The classification schemes built by machine learning approaches incorporate recurrent

motifs of species occurrences and the shared influences of primary environmental variable. It

thus allows addressing the signatures of ecological processes on species assemblages, in line

with alternative approaches such as jSDM [27]. SDM approaches classifying multiple species

can incorporate macroecological constraints and acknowledge saturation rules [51, 52]. In

addition, multi-species SDMs should be more robust to biases in occurrence information [24].

We notice that the problem addressed here, i.e. predicting species relative probabilities given

that there is an occurrence, is different to predicting the relative occurrence intensity of each

species across space, like it is done by MAXENT [9] and more generally Poisson Point Pro-

cesses models [53]. The occurrence intensity estimated in the latter case is sensitive to the

observation effort bias [25], while in the former case, we don’t aim at providing a spatial inten-

sity estimation. DNN and CNN are powerful approaches able to grasp complex influences of

environmental variables on many species. Despite this complexity, regularisation rules have

proved successful in selecting relevant information and parsimonious enough models. There-

fore, CNN-SDMs should be able to grasp meaningful ecological and biogeographical patterns

shared by many species, and thereby provide robust predictions.

The activation maps of the neurons of the last layer, i.e. the features, allow the visualization

of the ecological patterns learned by the CNN-SDM. We found that neurons were active in rel-

atively large or multiple areas, which could represent complex environmental and macroecolo-

gical signatures corresponding to local or landscape-level environmental conditions. By

nature, these integrative neurons could combine multiple environmental drivers and thus

their complex and joint influence, e.g. through compensation processes. Some neuron activa-

tion maps were consistent with large-scale geomorphological patterns such as mountain

ranges or coastal zones. The activation maps could be used to examine how emergent macroe-

cological patterning stems from species dynamics and environmental variation [54]. It shows

the potential of machine learning approaches to unravel large-scale macroecological patterns

from intensive occurrence datasets [55].

Our study shows the benefit of using Convolutional Neural Networks for species distribu-

tion modelling (CNN-SDMs). First, their architecture allows learning highly non-linear envi-

ronmental descriptors. Second, they are particularly effective for predicting distributions of

rare species. Third, a major advantage is the ability of CNN to use very high dimensional data

such as environmental tensors. Indeed, our study shows that the CNN-SDMs capture an

information of environmental landscape structuring through environmental tensors. This

information is richer than the punctual environment but is not accessible to conventional

models.
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47. Dormann FC, McPherson MJ, B Araújo M, Bivand R, Bolliger J, Carl G, et al. Methods to account for

spatial autocorrelation in the analysis of species distributional data: a review. Ecography. 2007; 30

(5):609–628. https://doi.org/10.1111/j.2007.0906-7590.05171.x

48. Wilson EO, MacArthur RH. The theory of island biogeography. Princeton University Press; 1967.

49. Merckx T, Dantas de Miranda M, Pereira HM. Habitat amount, not patch size and isolation, drives spe-

cies richness of macro-moth communities in countryside landscapes. Journal of Biogeography. 2019;

46(5):956–967. https://doi.org/10.1111/jbi.13544

50. Bueno AS, Peres CA. Patch-scale biodiversity retention in fragmented landscapes: Reconciling the

habitat amount hypothesis with the island biogeography theory. Journal of Biogeography. 2019; 46

(3):621–632. https://doi.org/10.1111/jbi.13499

51. Ovaskainen O, Tikhonov G, Norberg A, Guillaume Blanchet F, Duan L, Dunson D, et al. How to make

more out of community data? A conceptual framework and its implementation as models and software.

Ecology Letters. 2017; 20(5):561–576. https://doi.org/10.1111/ele.12757 PMID: 28317296

52. Mateo RG, Mokany K, Guisan A. Biodiversity models: what if unsaturation is the rule? Trends in Ecology

& Evolution. 2017; 32(8):556–566. https://doi.org/10.1016/j.tree.2017.05.003

53. Renner IW, Warton DI. Equivalence of MAXENT and Poisson Point Process Models for Species Distri-

bution Modeling in Ecology. Biometrics. 2013; 69(1):274–281. https://doi.org/10.1111/j.1541-0420.

2012.01824.x PMID: 23379623

54. Marquet PA. Integrating macroecology through a statistical mechanics of adaptive matter. Proceedings

of the National Academy of Sciences. 2017; 114(40):10523–10525. https://doi.org/10.1073/pnas.

1713971114 PMID: 28973860
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