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Abstract
1. Habitat suitability models infer the geographical distribution of species using oc-

currence data and environmental variables. While data on species presence are 
increasingly accessible, the difficulty of confirming real absences in the field often 
forces researchers to generate them in silico. To this aim, pseudo- absences are 
commonly sampled randomly across the study area (i.e. the geographical space). 
However, this introduces sample location bias (i.e. the sampling is unbalanced 
towards the most frequent habitats occurring within the geographical space) and 
favours class overlap (i.e. overlap between environmental conditions associated 
with species presences and pseudo- absences) in the training dataset.

2. To mitigate this, we propose an alternative methodology (i.e. the uniform ap-
proach) that systematically samples pseudo- absences within a portion of the en-
vironmental space delimited by a kernel- based filter, which seeks to minimise the 
number of false absences included in the training dataset.

3. We simulated 50 virtual species and modelled their distribution using training 
datasets assembled with the presence points of the virtual species and pseudo- 
absences collected using the uniform approach and other approaches that ran-
domly sample pseudo- absences within the geographical space. We compared the 
predictive performance of habitat suitability models and evaluated the extent 
of sample location bias and class overlap associated with the different sampling 
strategies.

4. Results indicated that the uniform approach: (i) effectively reduces sample loca-
tion bias and class overlap; (ii) provides comparable predictive performance to 
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1  |  INTRODUC TION

Habitat suitability models (hereafter, HSMs) are a class of statistical 
models used to describe the relationship between species attributes 
(e.g. presence– absence and abundance) and a set of spatially explicit 
variables chiefly representing abiotic, biotic and human- related factors 
(e.g. climate, soil, demographic parameters and land- use). These mod-
els are rooted in the niche theory (i.e. Hutchinsonian niche, see Guisan 
et al., 2017) and rely on both theoretical and practical assumptions: 
(i) species are assumed to be at (quasi)equilibrium with their environ-
ment (Hattab et al., 2017); (ii) the set of predictors used to fit HSMs in-
cludes all necessary information to capture the ecological niche of the 
species; and (iii) species distribution attributes, used as the response 
variable, need to be appropriate for the intended model purpose (e.g. 
biodiversity conservation, forecasting biological invasions, assessing 
the effects of global change; Tessarolo et al., 2021; but see also Guisan 
et al., 2017 for a thorough review on the theoretical assumptions un-
derpinning HSMs). Some of these assumptions are hardly, if ever, met 
in nature since species are seldom at equilibrium with their environ-
ment (Svenning & Skov, 2004), posing several limitations to the use and 
interpretation of HSMs' outputs. Acknowledging and, when possible, 
addressing these limitations still makes HSMs a powerful toolbox for 
understanding the drivers of the species' realised and potential dis-
tributions (sensu Jackson & Overpeck, 2000). For this reason, HSMs 
are still widely applied in several research fields, including biogeogra-
phy (Duffy et al., 2017; Wasof et al., 2015), climate change ecology 
(Jarvie & Svenning, 2018), conservation biology (Newbold, 2018; 
Santini et al., 2021), invasion ecology (Bazzichetto et al., 2021; Da Re 
et al., 2020; Hattab et al., 2017) and pathogen risk assessment (Batista 
et al., 2023).

One of the most critical assumptions underpinning HSMs is the 
appropriateness of biological data for modelling the ecological niche 
of the species, which means that species distribution attributes, being 
either presence– absence or abundance data, should allow an effec-
tive description of the true species– environment relationship (Baker 
et al., 2022; Guisan et al., 2017). However, while information on spe-
cies occurrence (i.e. presence) is usually readily accessible through 
field- collected observations or museum/herbaria records, trustworthy 
absence data are by far more difficult to gather or confirm in the field 
(Jiménez- Valverde et al., 2008), as their sampling requires labour- 
intensive and costly field campaigns (Hattab et al., 2017). The usual lack 
of true absence data has led to the development of HSM approaches 

that either rely solely on presence data (so- called ‘presence- only mod-
els’, such as the BIOCLIM model; Booth et al., 2014) or combine pres-
ence data with pseudo- absences or background points for modelling 
species distributions (e.g. the MaxEnt algorithm; Phillips et al., 2017).

Pseudo- absences and background points are terms often used 
interchangeably in the scientific literature (Sillero & Barbosa, 2020), 
but they may represent different conditions. Pseudo- absences 
are sampled from locations considered unsuitable for the species 
(Barbet- Massin et al., 2012). In contrast, background points encom-
pass the full range of environmental conditions, including poten-
tial suitable locations for the species (presence locations; Hallgren 
et al., 2019; Phillips et al., 2009). The choice between pseudo- 
absences and background points indicates the user's uncertainty 
about the ecological preferences of the species, with background 
points used when there is no prior knowledge of unsuitable envi-
ronmental conditions. Despite recognising the distinction, we will 
henceforth use the term pseudo- absences to refer to both pseudo- 
absences and background points for simplicity and alignment with 
our study.

The most common approaches for sampling pseudo- absences in-
volve (i) randomly surveying a large number of points across the study 
area (e.g. 10,000; Barbet- Massin et al., 2012; Hysen et al., 2022; 
Iturbide et al., 2015; Støa et al., 2019) or (ii) sampling them within 
or (iii) outside buffers created around presence locations (Bedia 
et al., 2013; VanDerWal et al., 2009). These approaches share the 
characteristic of deploying pseudo- absences randomly across the 
geographic space, which often leads to oversampling of the most 
common habitat conditions that are widespread in the study area 
(Ronquillo et al., 2020; Tessarolo et al., 2014, 2021). This sample lo-
cation bias negatively impacts HSMs in multiple ways. First, it can 
introduce a bias in the sampling of environmental conditions expe-
rienced by a species, potentially affecting the accurate estimation 
of the species response curve, particularly in heterogeneous areas 
(Albert et al., 2010; Austin, 2007; Bazzichetto et al., 2023; Beck 
et al., 2014; Hortal et al., 2008). Second, it influences the predictive 
performance of HSMs, as reflected in the evaluation metrics used 
(Jiménez- Valverde et al., 2013; Sillero & Barbosa, 2020).

To overcome this issue, previous studies (Hattab et al., 2017; 
Varela et al., 2014) proposed to sample species presence and (true) 
absence data throughout a systematic sampling of the environ-
mental conditions available across the study area, thus limiting 
the artificial constraint imposed by the random sampling towards 

sampling strategies carried out in the geographical space; and (iii) ensures gath-
ering pseudo- absences adequately representing the environmental conditions 
available across the study area. We developed a set of R functions in an accompa-
nying R package called USE to disseminate the uniform approach.

K E Y W O R D S
background points, class overlap, ecological niche models, presence- only models, 
reproducibility, sample location bias, species distribution models
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the most widespread environments. More specifically, Varela 
et al. (2014), Hattab et al. (2017) and Perret and Sax (2022) sug-
gested collecting species' presence and/or absence within 2-  or 
3- dimensional environmental spaces obtained using ordination 
techniques. Such approaches significantly contributed to the im-
provement and standardisation of the way species observations, 
including pseudo- absences, can be collected to calibrate HSMs 
reducing sample location bias. Yet, they do not explicitly consider 
class overlap, another relevant methodological issue encoun-
tered when collecting pseudo- absences through random sampling 
across the geographical space. Class overlap refers to the overlap 
between environmental conditions associated with both species' 
presence and absence, thus hindering the concept of pseudo- 
absences itself. It has negative effects on the predictive perfor-
mance of HSMs and it is particularly critical for machine- learning 
techniques, while regression techniques such as generalised linear 
models seem to be less affected (Barbet- Massin et al., 2012; Grim-
mett et al., 2020; Valavi et al., 2021). So far, class overlap has been 
addressed using resampling techniques more oriented to adjusting 
an unbalanced number of classes in the response variable (i.e. the 
‘up- ’ or ‘down- sampling’ approach; Valavi et al., 2021), irrespective 
of the technique used to obtain pseudo- absences.

As far as we know, there are no approaches for sampling pseudo- 
absences that seek to mitigate both sample location bias and class 
overlap. Here, we present an alternative sampling strategy, which we 
call the ‘uniform’ approach, that builds upon existing strategies for 
systematically sampling the environmental space to select pseudo- 
absences. The novel aspect of the uniform approach is that, beyond 
reducing sample location bias, it also minimises class overlap by im-
plementing a kernel- based filter that is used to delineate the portion 
of the environmental space where to collect pseudo- absences. To 
test our approach, we simulated 50 virtual species and compared the 
predictive performance of HSMs trained on pseudo- absences sam-
pled using the uniform approach as well as other sampling strategies 
traditionally carried out within the geographical space: random (i.e. 
pseudo- absences randomly sampled within the geographical space) 
and buffer- out (i.e. pseudo- absences randomly collected outside 
buffers built around presence locations). To foster reproducibility, 
we provide an accompanying R package called USE (Uniform Sam-
pling of the Environmental space), which bundles the R functions 
needed to implement the uniform approach. The package is avail-
able at https://github.com/dandd r/USE. Finally, we provide a tutorial 
to explain how to apply the uniform approach to real case studies, 
using the European beech Fagus sylvatica L. as a target species.

2  |  METHODS

2.1  |  Simulation of virtual species

We used virtual species (hereafter VS), a simulation tool that pro-
vides the great advantage of knowing the true generative pro-
cess underlying the species geographical distribution (Meynard 

et al., 2019). We created the realised environmental space (sensu 
Jackson & Overpeck, 2000) of 50 different virtual species using 
the bioclimatic variables gathered from the WorldClim database 
(www.world clim.org; spatial resolution ~18.6 km at the Equator; 
Fick & Hijmans, 2017). We restricted the distribution of the simu-
lated VS (and those of the bioclimatic variables) to the geographical 
extent spanning from - 12° W to 25° E and from 36° to 60° N (ap-
proximately Western and Southern Europe) to significantly reduce 
the computational effort to process the entire workflow. Each VS 
was generated using a random set of five bioclimatic variables (out 
of the 19) through the function generateRandomSp from the R 
package virtualspecies (Leroy et al., 2016), which randomly 
assigns relationships between the VS and the bioclimatic variables 
(e.g. linear, quadratic relationships). This way, we obtained a ras-
ter layer reporting the habitat suitability index of each VS (HSI, 
Figure 1a), which we then converted to a binary (i.e. presence– 
absence) map using the function convertToPA. Further details 
about parameter settings can be found in the R code available at 
https://github.com/dandd r/USE_paper.

2.2  |  Sampling the pseudo- absences

Regardless of the sampling approach and modelling technique used 
to calibrate the HSMs, the ratio between the number of presences 
and pseudo- absences in the training datasets (i.e. sample prevalence) 
was kept equal to 1, which means that an equal number of pres-
ences and pseudo- absences were collected. In practice, each of the 
VS- specific training datasets included 300 presences, which were 
randomly sampled within the geographical extent using the func-
tion sampleOccurrences from the virtualspecies R package. 
Consequently, we collected an equal number of pseudo- absences 
according to the three sampling strategies presented below.

2.2.1  |  Uniform approach: Pseudo- absences 
sampled within the environmental space

For each VS (i.e. iteration), we built a 2- dimensional environmental 
space by keeping the first two axes of a principal component analysis 
(PCA) performed on the correlation matrix of the five randomly se-
lected bioclimatic variables used to generate the realised environment 
(Figure 1b). Each time, we checked that the first two principal compo-
nent axes accounted for at least 70% of the total bioclimatic variability. 
Then, we uniformly sampled pseudo- absences in the environmental 
space using the uniformSampling function. In short, each pseudo- 
absence is associated with a geographical location (i.e. a pixel of the 
environmental layers), which is in turn characterised by the set of 
environmental conditions encountered at that location. Such a com-
bination of environmental conditions determines the position of the 
pseudo- absence within the environmental space. A pseudo- absence 
can thus be defined as the projection of a geographical location onto 
the environmental space generated through the PCA (i.e. a PC score). 
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Below, we present a step- by- step description of the uniform sampling 
performed by the function paSampling, which internally calls uni-
formSampling (both functions are included in the USE R package):

1. First, kernel density estimation (a statistical technique used to 
estimate the underlying probability distribution of a set of data 
points by smoothing them with a kernel function; Scott, 1992) 
is used to calculate the probability density function of the 
presence data within the 2- dimensional environmental space. 
Similar uses of kernel density estimation have become popular 
in recent years, especially due to their increasing use in trait- 
based ecology to compute probabilistic hypervolumes and trait 
probability densities (Mammola & Cardoso, 2020 and reference 

therein). The PC scores associated with a probability threshold 
equal to or greater than 0.75 (i.e. the default threshold value 
used in the paSampling function) are likely to bear environ-
mental conditions associated with presence locations. Thus, 
we selected these presence locations and we generated the 
convex hull delimiting the portion of the environmental space 
mostly associated with this set of presence points within the 
environmental space (Figure 1c). The kernel bandwidth (i.e. the 
width of the kernel density function that defines its shape) 
can be either defined by the user or automatically estimated 
by the function paSampling. In the latter case, the function 
uses a bandwidth selector by internally calling the function 
Hpi of the R package ks (Duong, 2021).

F I G U R E  1  Flowchart representing the step- by- step procedure for implementing the uniform approach: (a) habitat suitability index (HSI) 
of the i- th virtual species (VS; lighter colours indicate higher habitat suitability and black dots represent presence points in the geographical 
space); (b) Principal component analysis (PCA) performed on the environmental variables in the study region (lighter colours indicate high 
PC scores densities and black dots represent the presence points within the environmental space); (c) application of the kernel- based filter, 
which splits the environmental space into two subspaces associated with either the environmental conditions more suitable for the species 
(in blue) or those associated with less/not suitable environmental conditions (in red; with black dots still depicting presence points); (d) 
pseudo- absences are uniformly sampled across a sampling grid of a chosen resolution overlaid to the 2- dimensional environmental space. 
Specifically, pseudo- absences are sampled within each cell of the 2- D grid. The inset map shows an example of a grid cell at the boundary of 
the environmental space (i.e. a grid cell containing a low density of pseudo- absences), black dots represent presence points; (e) the purple 
dots represent the pool of randomly selected pseudo- absences after running the uniform sampling approach; (f) the white dots represent 
the selected set of pseudo- absences after running the uniform sampling approach, but displayed in the geographical space this time, black 
dots still represent presence points from the focal virtual species. The sample prevalence and the number of pseudo- absences sampled 
within each cell of the sampling grid were defined as prev = 1 and n.tr = 5, respectively, in the paSampling function.
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2. The portion of the environmental space defined by the above- 
mentioned convex hull is removed from the whole environmental 
space. Then, a sampling grid was generated from a preselected 
resolution (e.g. 10 × 10 cells) and overlaid on the 2- dimensional 
environmental space (Figure 1d). The optimal resolution of the 
sampling grid within the environmental space can be determined 
using the function optimRes from the USE package. This func-
tion operates as follows:

• Within each cell of the sampling grid, the average (squared) 
Euclidean distance between the pseudo- absences (PC scores) in 
the cell and the centroid of their convex hull is computed;

• Once this metric is computed across all cells of the sampling grid, 
the average mean value is computed across all cells (hereafter, 
grid average);

• The procedure above is separately repeated on different sampling 
grids of increasing resolution (i.e. increasing number of cells);

• The resulting set of grid averages (one per resolution) are used 
as a measure of the aggregation among pseudo- absences within 
the cells of the sampling grids. This value is compared across 
resolutions, and the best grid is chosen as the one providing the 
best trade- off between resolution and average distance among 
points within cells (i.e. the resolution that allows uniformly sam-
pling the environmental space without overfitting it). More spe-
cifically, the best grid is the one whose resolution is just below 
that which would not allow the average distance among pseudo- 
absences to be reduced by more than 10% (other values can be 
set by the user).

3. Once the optimal resolution is set, the sampling grid is sequen-
tially scanned (i.e. cell by cell) by the uniformSampling function 
called via the paSampling function and, from each grid cell, a 
given number of pseudo- absences is randomly collected. At this 
stage, the pseudo- absences associated with environmental condi-
tions too close to those of the presence locations are already ex-
cluded (see step 1). Note that the pseudo- absences are randomly 
selected within the area of each cell of the sampling grid, and not 
at the centroid nor at the nodes.

The total number of pseudo- absences sampled within each cell of 
the sampling grid can be set by the user (using the argument 
n.tr, default n.tr = 5), who can also indicate a desired sam-
ple prevalence. If the sample prevalence is not specified, fewer 
pseudo- absences are likely to be eventually sampled than ex-
pected (i.e. n.tr × number of cells). This happens because (i) no 
pseudo- absence points are collected in empty cells, and (ii) fewer 
pseudo- absence points than n.tr are available within the cells at 
the boundary of the environmental space (see zooming window 
in Figure 1d). Similarly, no pseudo- absences are collected within 
the core area of the presences (excluded in step 1). If a sample 
prevalence is set by the user, the sampling grid is surveyed until 
the chosen sample prevalence is reached by the algorithm.

2.2.2  |  Pseudo- absences sampled within the 
geographical extent

The sampling of pseudo- absences within the geographical extent 
was conducted using the random and buffer- out approaches. For the 
random approach (Barbet- Massin et al., 2012; Iturbide et al., 2015; 
Støa et al., 2019), we simply generated 300 random pseudo- absences 
across the studied geographical extent. For the buffer- out approach 
(Bedia et al., 2013), we created a buffer of a 50 km radius around each 
presence location, and we then randomly sampled pseudo- absences 
outside the presence- specific buffers, but within the convex hull of 
the species geographical distribution (i.e. the convex hull that connects 
the outer presences of the species and thus delimits the range actually 
covered by the species in the geographical space).

2.3  |  Habitat suitability models

For each of the 50 VS and for each of the three sampling strate-
gies (i.e. uniform, random and buffer- out), we built a specific dataset 
combining the presence records with the pseudo- absences sam-
pled within the environmental and the geographical space. First, we 
modelled the presence and pseudo- absences data as a function of 
the same five bioclimatic variables used to generate each of the 50 
VS. To this aim, we randomly partitioned each dataset (specific for 
a sampling strategy) into five replicates of both training (70% ob-
servations) and testing (30%) sets, which we used to calibrate and 
validate, respectively, and for each replicate, five modelling algo-
rithms: (i) binomial generalised linear models with ‘logit’ link (GLMs); 
(ii) generalised additive models (GAMs); (iii) random forests (RFs); (iv) 
boosted regression trees (BRTs); and (v) MaxEnt. In total, we fitted 
3750 HSMs (50 VS species × 3 different sets of pseudo- absences × 5 
modelling algorithms × 5 replicates of 70%– 30% partitions). To 
fit the HSMs, we used the R package sdm (Naimi & Araújo, 2016). 
Although we acknowledge the importance of fine- tuning HSMs 
(Fourcade, 2021), we kept model settings at their default value 
since it would have been unfeasible to individually parametrise each 
algorithm for all 50 VS and sampling strategies. A detailed repre-
sentation of the workflow of the analyses is shown in Figure 2. Fur-
thermore, we acknowledge that our use of MaxEnt did not conform 
with the general recommendations for its adequate implementa-
tion (e.g. using 10,000 background points; Cobos et al., 2019; Kass 
et al., 2021). Nonetheless, we included it in the comparison of mod-
els' performance due to its wide usage within the HSM community.

2.4  |  Comparison among sampling strategies

2.4.1  |  Predictive performance comparison

After fitting HSMs for all the 50 VS, we compared the predictive 
performance associated with each combination of sampling ap-
proaches and modelling techniques by computing the following 
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metrics: (i) the area under the receiver operating characteristic 
curve (AUC); (ii) the continuous Boyce index (CBI); (iii) the sen-
sitivity; (iv) the specificity; (v) the true skill statistics (TSS); and 
(vi) the root mean squared error (RMSE). The RMSE was com-
puted by comparing the true (i.e. simulated) habitat suitability of 
the focal VS against the one predicted by each combination of 
modelling and sampling approach. A detailed description of the 
above- mentioned modelling techniques and validation metrics 
can be found in Guisan et al. (2017). To compare the predictive 
performance of the HSMs fitted under different combinations of 
sampling strategy and modelling technique, we visually assessed 
the results of the 50 VS simulations using violin plots reporting the 
distribution of the values of the predictive performance metrics 
listed above. Furthermore, we tested for statistical differences 
between the three sampling strategies for each predictive accu-
racy metric using the Kruskal– Wallis test, followed by two- tailed 
Dunn's post hoc rank- sum comparisons using the dunn.test R 
package (Dinno, 2017; p- values for multiple comparisons adjusted 
using Holm correction).

2.4.2  |  Sample location bias and class overlap

To assess the intensity of sample location bias associated with the 
different sampling strategies, we extracted the pseudo- absences 
of a single VS and mapped their aggregation within the environ-
mental space using bivariate density plots. The aim was to iden-
tify which, among the three sampling strategies, was more subject 

to oversampling particular environmental conditions within the 
geographical space. In principle, the sampling strategies more af-
fected by sample location bias would exhibit a clear aggregation 
of pseudo- absences within the environmental space. We visually 
assessed the areas of the environmental space sampled by the dif-
ferent sampling strategies using the function geom_density_2d 
of the ggplot2 R package (Wickham, 2016). This function per-
forms a 2D kernel density estimation using the kde2d function 
of the MASS R package (Venables & Ripley, 2002) and displays 
the results with contours. In addition, for 10 new VS, we calcu-
lated the total range (i.e. max PC score –  min PC score) of the two 
principal component axes associated with the pseudo- absences 
collected through the different sampling strategies. We then 
derived the 95% confidence interval of the total range through 
a nonparametric bootstrap (n = 2000) using the function smean.
cl.boot from the Hmisc R package for each principal component 
axis and sampling strategies (Harrell, 2021). We tested for statisti-
cal differences for each principal component axis among sampling 
strategies using the Kruskal– Wallis test followed by two- tailed 
Dunn's post hoc rank- sum comparisons with Holm's correction. 
To assess the effectiveness of the uniform approach for mitigat-
ing class overlap, we simulated 10 new VS, sampled their pres-
ences and pseudo- absences using the three sampling strategies 
and mapped the position of the presence and pseudo- absence 
points within the environmental space following the procedure 
explained in Section 2.2.1 and Figure 1a,b. Then, we computed 
the Gaussian hypervolume of the presences and pseudo- absences 
using the hypervolumes R package (Blonder et al., 2014, 2022) 

F I G U R E  2  The overall workflow of 
the analysis described in the Methods 
section. The ‘*’ is associated with analyses 
(i.e. sample bias, class overlap, sample 
prevalence and radius of the buffer) 
performed on n = 10 virtual species (VS).
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and calculated the overlap between them. Statistically significant 
differences in the degree of overlap were tested using one- way 
ANOVA and Tukey HSD test.

2.5  |  Sensitivity analyses

In our analytical framework, we kept the value of the following pa-
rameters fixed: sample prevalence, the size of the buffer for the 
buffer- out approach and the number of bioclimatic variables used as 
predictors to fit the HSMs for the VS. To test the potential effect on 
our results of varying these parameters, we conducted the following 
sensitivity analyses:

• To test the effect of changing sample prevalence on the pre-
dictive performance of the different sampling strategies, we 
repeated the entire workflow on 10 VS using two additional 
prevalence values, namely 0.5 and 0.1. Specifically, for each 
VS, we generated two additional training datasets with 300 
presences, but we combined them with 600 and 3000 pseudo- 
absences to achieve a sample prevalence of 0.5 and 0.1, 
respectively.

• To test the effect of the size of the buffer on the predictive per-
formance of the buffer- out approach, we repeated the entire 
workflow on 10 VS considering the 100 and 200 km buffer radius 
lengths, in addition to the 50 km buffer radius length.

• To test how using a different number of bioclimatic variables 
would affect the predictive performance of the sampling strat-
egies, we repeated the entire workflow on 50 VS using all 19 
bioclimatic variables to both define the environmental space to 
generate the VS and as predictors to fit the related HSMs.

2.6  |  Real case study

To illustrate how to apply the uniform approach with the USE R pack-
age, we modelled the realised distribution of Fagus sylvatica in Italy, 
France and Spain. We chose F. sylvatica as a target species because 
its distribution and biogeographic history are well- known across Eu-
rope (Magri et al., 2006; Poli et al., 2022). The whole analysis of F. 
sylvatica is described in Appendix S5, and the R code to replicate it 
can be found at: https://github.com/dandd r/USE_paper.

3  |  RESULTS

3.1  |  Comparison of the predictive performance 
associated with geographical vs environmental 
sampling

Overall, the uniform approach performed equal to or better than 
the geographical approaches in terms of out- of- sample prediction 
(Figure 3). Pairwise comparisons between the predictive accuracy 

performance of the uniform approach against the random and 
buffer- out approaches showed statistically significant differences 
in 73% and 47% of the combinations, respectively. However, these 
differences were algorithm-  and metric- dependent and did not point 
to an overall higher predictive performance of the uniform approach 
(Figure 3, Table S1, Figure S1.1). The pattern of the differences 
among predictive performance metrics was consistent among the 
prevalence values (Figures S2.1– 2.) and the number of bioclimatic 
variables used in the models (Figure S3). Increasing the buffer radius 
length (Figure S4) resulted in higher predictive performance of the 
buffer- out approach for some metrics (AUC, TSS and specificity), 
while for CBI, sensitivity and RMSE results remained comparable 
with those presented in Figure 3.

3.2  |  Effect of sample location bias and 
class overlap

The bivariate density plots of the pseudo- absences sampled within 
the environmental and geographical space highlighted that the uni-
form approach had the widest and most homogeneous coverage of 
environmental conditions throughout the environmental space (Fig-
ure 4, see Figure S1.2 for a more detailed representation of the den-
sity of pseudo- absences sampled within the environmental space 
when running the uniform approach; Figure S1.3). In contrast, the 
random and buffer- out approaches appeared to be prone to sample 
location bias, with peaks of high density of pseudo- absences oc-
curring in specific areas of the environmental space, that is, those 
associated with the most frequent habitat conditions encountered 
within the geographical space, and a narrow mean range of PC 
scores sampled along both principal component axes compared with 
the uniform approach (Figure 4, Figure S1.3; Kruskal– Wallis test for 
PC1: χ2 = 21.54, df = 2, p- value < 0.001; Kruskal– Wallis test for PC2: 
χ2 = 14.91, df = 2, p- value < 0.001).

Regarding class overlap, we detected a statistically significant dif-
ference in the overlap between the portions of the environmental space 
occupied by presences and pseudo- absences sampled through differ-
ent approaches (one- way ANOVA F(2, 27) = 5.83, p- value = 0.008). 
Specifically, the uniform approach exhibited the lowest overlap in 
comparison with the other sampling strategies (Figure 5). The post hoc 
Tukey HSD test showed that the uniform approach exhibited a signifi-
cantly lower overlap than the random sampling (p < 0.001), whereas 
the uniform- buffer- out and buffer- out- random comparisons did not 
show significant differences (p = 0.09, p = 0.47).

4  |  DISCUSSION

In this study, we proposed the uniform approach as an alterna-
tive strategy to sample pseudo- absences within the environ-
mental space. In contrast to existing techniques, our approach 
systematically samples pseudo- absences from portions of the 
environmental space excluding the conditions that are likely to 
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be suitable for the species to establish. As a result, the uniform 
approach reduces the chance of including false absences in the 
training dataset. From a more theoretical perspective, data col-
lected after the application of the kernel- based filter are much 
closer to the concept of pseudo- absences than those obtained 
through traditional, geographical sampling approaches. Our find-
ings show that the uniform approach represents a valid strat-
egy for gathering pseudo- absences, resulting in out- of- sample 
predictive accuracy comparable to the sampling strategies im-
plemented within the geographical space. In addition, the uni-
form sampling significantly reduces sample location bias and 
class overlap, which is critical to obtain ecologically meaningful 
pseudo- absences. Importantly, the uniform approach is flexible, 
as it allows the user to set parameters (e.g. kernel bandwidth, 
sample prevalence and sampling grid resolution) that control how 
pseudo- absences are sampled within the environmental space. 

Such flexibility is particularly valuable to mimic different ecologi-
cal processes that are easier to capture within the environmental 
space than within the geographical space (e.g. source– sink dy-
namics). In all cases, by generating informative pseudo- absences, 
the uniform approach allows satisfying one of the most critical 
assumptions underpinning habitat suitability modelling: the need 
for adequate species distribution attributes (i.e. pseudo- absence 
data here) to model the species– environment relationship 
(Guisan et al., 2017).

4.1  |  Effect of the sampling approaches on models' 
predictive performance

Results of the VS' simulations showed that the uniform approach 
performed well in terms of out- of- sample prediction regardless of 

F I G U R E  3  Violin plots reporting the distribution of the values of the metrics of predictive performance for the habitat suitability models 
(HSMs) of the 50 virtual species (VS), as modelled using five randomly selected bioclimatic predictors and setting sample prevalence equal 
to 1 (i.e. same number of presences and pseudo- absences). Dots represent median values of the metrics of predictive accuracy. Columns 
indicate the different performance metrics, while rows are associated with the modelling techniques used to fit the HSMs. Higher values 
in all metrics but RMSE reflect higher predictive performance. AUC = area under the curve; CBI = continuous Boyce index, TSS = true 
skill statistic; RMSE = root mean squared error; GLM = generalised linear model; GAM = generalised additive model; RF = random forest; 
BRT = boosted regression trees.

 2041210x, 2023, 11, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14209 by C
ochraneB

ulgaria, W
iley O

nline L
ibrary on [30/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  2881Methods in Ecology and Evolu
onDA RE et al.

the modelling technique, the metric of predictive performance 
and the sample prevalence used. All HSMs calibrated on pseudo- 
absences sampled with the uniform approach consistently showed 
high predictive performance, especially for the metrics related to the 
capacity of a model to correctly predict presences (i.e. sensitivity 
and CBI). Concerning the metrics associated with the model's ability 
to predict absences (e.g. specificity), the uniform sampling showed 
values comparable to the other strategies. This suggests that the 
uniform approach reduces omission error without necessarily in-
creasing commission error. This is coherent with Fei and Yu (2016), 
who reported an increase in overall model predictive performance 

when pseudo- absences were systematically collected within the en-
vironmental space.

In this sense, results for the CBI, which is currently the go- to 
accuracy metric for validating HSMs fitted on pseudo- absences (or 
background points), and for the RMSE were particularly encourag-
ing since the uniform approach scored, together with the buffer- out 
approach, the highest CBI values and lowest RMSE values across 
all modelling techniques. The high predictive performance associ-
ated with the uniform approach can be attributed to its two main 
underlying properties: the systematic sampling of the environmental 
space and the kernel- based filter on the presence observations.

F I G U R E  4  (a) Bivariate plots showing the environmental space generated by a principal component analysis carried out on five bioclimatic 
variables. Red lines represent the density of pseudo- absences for an individual virtual species, as sampled by the random and buffer- out 
approaches within the geographical space, and by the uniform approach within the environmental space. A more detailed representation 
of the density of pseudo- absences sampled by the uniform approach is reported in Figure S1.2. (b) Histograms showing the frequency 
distribution of the first two principal components (columns) associated with the different sampling strategies (rows).
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Notwithstanding the positive results obtained in terms of 
predictive performance, we argue that a comparison of met-
rics of model predictive accuracy may not be the best means 
for evaluating the adequacy of different sampling strategies 
carried out within the environmental rather than the geograph-
ical space. Indeed, previous studies showed that these metrics 
are affected by several factors, including sample prevalence 
(Guisan et al., 2017; Leroy et al., 2018; Marchetto et al., 2023), 
sample bias (Dubos et al., 2022; Rocchini et al., 2023) or the 
spatial extent of the study area (Lobo et al., 2008). Moreover, 
AUC and TSS tend to score high even in case of poor models cal-
ibrated on data exhibiting strong sample location bias (Fourcade 
et al., 2018; Jiménez- Valverde, 2021). Assessing HSM predictive 
performance using a set of different predictive accuracy met-
rics might help the user to critically evaluate the outputs of the 
models.

4.2  |  Effect of the uniform sampling on sample 
location bias and class overlap

The uniform approach proved to significantly reduce sample loca-
tion bias, since pseudo- absences were homogeneously scattered 
across the bivariate density plot of the two principal component 
axes (Figure 4a,b, Figure S1.2 in Supplementary Materials) and 

collected a wider range of PC scores compared with the random 
and buffer- out approaches (Figure S1.3). On the contrary, the two 
sampling approaches carried out within the geographical space 
exhibited prominent peaks of density of pseudo- absences in cor-
respondence with the most frequently encountered environmental 
conditions within the geographical space, resulting in a narrower 
mean of PC scores. As a consequence, the random and buffer- out 
approaches may provide suboptimal pseudo- absences for model-
ling the species– environment relationship (Austin, 2007; Thuiller 
et al., 2004). This aspect gets increasingly relevant as environmen-
tal conditions are more heterogeneously distributed across the 
geographical space (e.g. in mountain regions with high topographic 
heterogeneity). Therefore, HSMs calibrated on training datasets 
adequately representing environmental variability rather than wide 
geographical coverage represent a crucial step to better capture and 
discriminate species niche breadth (Bazzichetto et al., 2023; Perret & 
Sax, 2022; Tessarolo et al., 2014, 2021; Varela et al., 2014).

The uniform approach proved to also significantly reduce class 
overlap. The thres argument passed to the paSampling function 
controls the portion of the environmental space associated with the 
species presence, thus inherently limiting class overlap by the ex-
clusion of environmental conditions suitable to the species (see Fig-
ures 1c and 5; Figure S1.4). This results in a set of pseudo- absences 
theoretically much closer to the species' true absences. Given that 
presence points are unevenly distributed within the environmental 
space, different kernel thresholds might also be used to handle the 
sampling of pseudo- absences under particular scenarios. As an ex-
ample, setting a low kernel threshold would allow excluding acciden-
tal presences from unsuitable locations (e.g. ‘sink populations’) from 
the training dataset, while potentially including observations from 
these areas as pseudo- absences. Unfortunately, there is no a priori 
choice about the value of the threshold without having preliminary 
information on the species' ecology, the study area and the goal of 
the research. For this reason, we provided the thresh.inspect 
function, which produces plots depicting the entire environmental 
space alongside the portion that would be excluded based on a spe-
cific kernel density threshold.

4.3  |  Limitations and usage notes

4.3.1  |  Limitations

The first limitation of the uniform approach, which is anyway a 
general limitation in HSMs (e.g. Cayuela et al., 2009), is that its ef-
fectiveness depends on the amount (sample size) and quality (e.g. 
geographically unbiased data sensu Fourcade et al., 2014) of pres-
ence data. Indeed, if few presence data are available and/or pres-
ence data are geographically biased, the kernel- based filter might 
not accurately delimit the area associated with suitable conditions 
for the species. As a consequence, the capacity to discriminate be-
tween suitable and unsuitable conditions of the uniform approach 
might be negatively affected.

F I G U R E  5  Box plots showing the overlap between 
environmental spaces generated by presences and pseudo- 
absences of the virtual species. Letters denote significant 
differences using the Tukey HSD test. Colours are associated 
with the three sampling strategies used to generate the pseudo- 
absences (uniform in blue, random in yellow and buffer- out in pink).
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A second limitation is that, although the uniform approach 
proved to be robust to varying sample prevalence, its effective-
ness might diminish if a very large number of pseudo- absences 
is sampled (e.g. in case of low sample prevalence) (Figures S2.1– 
2.2). Since the uniform approach samples a user- defined number 
of pseudo- absences within a grid overlaid to a bi- dimensional en-
vironmental space, if the number of pseudo- absences grows in-
definitely, the advantage of the systematic sampling decreases. 
Indeed, oversampling the environmental space would generate 
datasets suffering from sample location bias as much as those 
based on the random sampling carried out within the geographical 
space.

From a more practical perspective, the uniform approach can 
currently operate only across 2- dimensional environmental spaces, 
but 3- dimensional spaces might be supported in the future.

Finally, although the idea behind USE and the uniform sampling 
approach is to provide users with an easy- to- use tool to generate 
more ecologically meaningful pseudo- absences, we acknowledge 
the existence of other techniques designed to avoid generating 
pseudo- absences altogether. Notable examples are point- process 
analyses (e.g. Isaac et al., 2020), which model the density of 
presence- only points per unit area, rather than the probability 
of presences and (pseudo- )absences. More recently, machine- 
learning methods based on isolation forests were also proposed, 
with the R package ITSDM specifically dedicated to HSMs (Song & 
Estes, 2023). We believe, however, that our approach provides a 
simpler and more intuitive way to deal with the issue of presence- 
only data and thus has a lower threshold for end- users to imple-
ment in their workflow.

4.3.2  |  Usage notes

We here used the uniform approach to sample bioclimatic spaces, 
although we stress the importance of not only using bioclimatic 
variables but also information on soil, land use and other relevant 
variables when modelling species distributions. Also, we invite po-
tential users of the uniform sampling approach to always check 
that the first two axes of the principal component analysis used 
to generate the environmental space explain a large portion of 
the variance observed in the data (e.g. ≥70%). Equally important 
is the choice of the boundaries of the geographical extent for 
which the 2- dimensional space has to be generated. Indeed, to 
avoid the ‘there are no elephants in the Antarctic’ paradox (Lobo 
et al., 2010), the spatial extent of the study area should be deline-
ated so that it excludes geographical locations, and in turn envi-
ronmental conditions, less suitable for the species (e.g. collecting 
pseudo- absences from Mediterranean coastal dunes when model-
ling the distribution of an alpine plant species). In short, the uni-
form approach can provide exhaustive information on where the 
species is likely to not occur, but it remains the responsibility of 
the end user to carefully verify if such information is ecologically 
meaningful.

5  |  CONCLUSIONS

In this study, we compared the predictive performance of two strat-
egies for sampling pseudo- absences carried out within the geo-
graphical space with that of the uniform approach, which operated 
within the environmental space. Also, we compared geographical 
and environmental sampling approaches in terms of their vulnerabil-
ity to sample location bias and class overlap. The uniform approach 
proved to have good predictive performances and to reduce sample 
location bias and class overlap, thereby representing a valid alterna-
tive to generate pseudo- absences for HSMs. We made the uniform 
approach openly available to the modellers community at https://
github.com/dandd r/USE.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Table S1. Post- hoc multiple comparisons with Dunn's rank sum test 
(α = 0.05; the omnibus test was always significant with p < 0.05, data 
not shown).
Figure S1.1. Post- hoc multiple comparisons with two- tailed Dunn's 
rank sum test (α = 0.05; the omnibus test was always significant with 
p < 0.05, data not shown).
Figure S1.2. Bivariate density plot of principal component scores 
associated with the pseudo- asbences sampled for a virtual species 
using the uniform approach.
Figure S1.3. Mean (points) and 95% confidence interval (error bars) 
of the principal components' total range (max PC- score –  min PC- 
score) captured by the three sampling strategies.
Figure S1.3. Mean (points) and 95% confidence interval (error bars) 
of the principal components' total range (max PC- score –  min PC- 
score) captured by the three sampling strategies.
Figure S2.1. Violin plots reporting the distribution of the values of 
the metrics of predictive performance for the habitat suitability 
models of 10 virtual species (dots represent median values of 
the metrics of predictive performance), considering 5 predictors, 
and using a sample prevalence equal to 0.5. Columns indicate 
the different performance metrics, while rows are associated 
with the modelling algorithms used to fit the habitat suitability 
models.
Figure S2.2. Violin plots reporting the distribution of the values 
of the metrics of predictive performance for the habitat suitability 
models of 10 virtual species (the dots represent median values of 
the metrics of predictive performance), considering 5 predictors, 
and using a sample prevalence equal to 0.1.
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Figure S3. Violin plots reporting the distribution of the values of 
the metrics of predictive performance for the habitat suitability 
models of 50 virtual species modelled as a function of 19 bioclimatic 
predictors, and setting sample prevalence equal to 1 (i.e. same 
number of presences and pseudo- absences).
Figure S4.1. Violin plots reporting the distribution of the values 
of the metrics of predictive performance for the habitat suitability 
models of 10 virtual species modelled as a function of 5 bioclimatic 
predictors, and setting sample prevalence equal to 1 (i.e. same 
number of presences and pseudo- absences).
Table S5.1. Results of the habitat suitability models for Fagus 
sylvatica (generalised linear model, GLM, and random forest, RF).
Figure S5.2. (A) environmental space available for Fagus sylvatica 
in Italy, Spain and France, and the position of presences (light blue) 
and pseudo- absences (red) sampled within the environmental space 

using the uniform approach; (B) distribution of principal component 
scores across the geographical space, and location (across western 
Europe) of presences (light blue) and pseudo- absences (red) sampled 
using the uniform approach.
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