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Abstract 22 
 23 
1. Trait diversity, including trait turnover, that differentiates the roles of species and 24 

communities according to their functions, is a fundamental component of biodiversity. 25 

Accurately capturing trait diversity is crucial to better understand and predict 26 

community assembly, as well as the consequences of global change on community 27 

resilience. Existing methods to compute trait turnover have limitations. Trait space 28 

approaches based on minimum convex polygons only consider species with extreme 29 

trait values. Tree-based approaches using dendrograms consider all species but distort 30 

trait distance between species. More recent trait space methods using complex 31 

polytopes try to harmonise the advantages of both methods, but their current 32 

implementation have mathematical flaws. 33 

2. We propose a new kernel integral method (KIM) to compute trait turnover, based on 34 

the integration of kernel density estimators (KDEs) rather than using polytopes. We 35 

explore how this difference and the computational aspects of the KDE computation can 36 

influence the estimates of trait turnover. We compare our novel method to existing 37 

ones using justified theoretical expectations for a large number of simulations in which 38 

we control the number of species and the distribution of their traits. We illustrate the 39 

practical application of KIM using plant species introduced to the Pacific Islands of 40 

French Polynesia. 41 

3. Analyses on simulated data show that KIM generates results better aligned with 42 

theoretical expectations than other methods and is less sensitive to the total number of 43 

species. Analyses for French Polynesia data also show that different methods can lead 44 

to different conclusions about trait turnover, and that the choice of method should be 45 

carefully considered based on the research question. 46 

4. Mathematical aspects for computing trait turnover are crucial as they can have 47 

important effects on the results and therefore lead to different conclusions. Our novel 48 

kernel integral method generates values that better reflect the distribution of species in 49 

the trait space than other existing methods. We therefore recommend using KIM in 50 

future studies on trait turnover. In contrast, tree-based approaches should be kept for 51 

phylogenetic diversity, as phylogenetic trees will then reflect the constrained speciation 52 

process. 53 
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1. Introduction 59 

 60 

Biodiversity is a complex concept and can most easily be quantified by distinguishing three 61 

complementary facets: taxonomic diversity based on a site-by-species matrix that captures 62 

the compositional properties of a community; phylogenetic diversity that captures the 63 

evolutionary relatedness among community members, using phylogenetic distance between 64 

species alongside the site-by-species matrix; and trait diversity that describes a community 65 

according to the traits of its residing species, using a species-by-trait matrix alongside the 66 

site-by-species matrix (Devictor et al., 2010). The study of functional traits has been 67 

advocated as fundamental to better understand and quantify community assembly (McGill 68 

et al., 2006), as well as the impact of global change on community resilience and on the 69 

ecosystem services that biodiversity provides (Gross et al., 2017). For example, through 70 

comparison with null models and by relating traits to environmental gradients and to each 71 

other, trait diversity can provide information about the assembly processes structuring an 72 

ecological community (Ackerly & Cornwell, 2007), including biotic interactions between 73 

species (Laureto et al., 2015). It also enables the estimation of components of ecosystem 74 

function, such as nutrient use and storage, or ecosystem productivity (Cadotte et al., 2011; 75 

Hillebrand & Matthiessen, 2009). 76 

 77 

In addition to the decomposition of biodiversity into taxonomic, trait and phylogenetic 78 

components, unravelling how biodiversity is organised requires an understanding of how 79 

assemblages of species are more or less similar to one another at different places and times, 80 

i.e. turnover (Anderson et al., 2011). To do so, beta (β) diversity provides a direct link 81 

between biodiversity at the regional (gamma – γ –  diversity) and local (alpha – α – diversity) 82 

scales (Anderson et al., 2011; Chao et al., 2005, 2019). In particular, taxonomic β diversity 83 

has been shown to be important for assessing the effects of conservation actions (Socolar et 84 

al., 2016), for example for estimating the effect of the spatial distribution of protected areas 85 

and their subdivision into multiple subareas on species diversity (Deane et al., 2022), or for 86 

extrapolating regional species richness from limited data (Kunin et al., 2018). Although 87 

having received less attention than taxonomic β diversity,  trait turnover that describes 88 

change in trait diversity across communities or regions has also been measured using β 89 
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diversity for similar applications (e.g. Carmona et al., 2012; Loiseau et al., 2017; Siefert et al., 90 

2013; Swenson et al., 2012; Villéger et al., 2013). 91 

 92 

As a valuable and increasingly measured biodiversity facet, there are multiple important 93 

steps to consider when estimating trait turnover over space or time. First, the precise choice 94 

of traits can substantially influence the outcome (Petchey & Gaston, 2006). Second, despite 95 

recent initiatives to collate large amounts of data for multiple traits across species (e.g. 96 

Kattge et al., 2020; Middleton-Welling et al., 2020; Tobias et al., 2022), trait data are still 97 

missing for many species and types of traits across taxonomic groups. Finally, and also the 98 

focus of this work, different mathematical methods exist to compute trait diversity and 99 

turnover that differ in outcome and therefore in the conclusions drawn in biodiversity 100 

studies (Loiseau et al., 2017; Sobral et al., 2016; Villéger et al., 2017). A systematic 101 

comparison can help identify an informative robust method and establish standards for 102 

quantifying trait turnover. 103 

 104 

There are two main categories of methods for calculating trait β diversity: (i) methods based 105 

on the concept of trait space (referred to here as the ‘trait space approach’, and (ii) 106 

methods that use dendrograms (referred to here as the ‘tree-based approach’). The trait 107 

space approach is based on a multi-dimensional space whose axes are determined by the 108 

traits included in the analyses. Axes can correspond directly to the original traits or can be 109 

derived from these traits through ordinations to reduce dimensionality. A particular species 110 

typically represented as a single point in this trait space, and a polytope is computed as the 111 

trait envelope of a set of points representing the species of a community or assemblage. The 112 

minimum convex polytope (MCP), a convex hull, that encompasses all species of a 113 

community in the trait space (Figure 1), has traditionally been used in these analyses 114 

(Loiseau et al., 2017). As the MCP only captures information about the species with extreme 115 

trait values in a community, it is sensitive to outliers and ignores how species are distributed 116 

in the trait space, which can be crucial to delineate the functional roles of different species 117 

within an ecosystem (Mouillot et al., 2021). Although other hull methods can be used to 118 

compute the trait envelope (e.g. Irl et al., 2017), they are typically computationally intensive 119 

and have been seldomly applied to β diversity analyses. 120 

 121 
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The tree-based approach consists of computing all pairwise distance between species based 122 

on a set of traits, typically using the Gower distance to incorporate both continuous and 123 

discrete traits. A clustering algorithm is then applied to these distances to generate a 124 

dendrogram, from which measures of β diversity can be computed. Although the tree-based 125 

approach considers all species in the computation of trait turnover, the dendrogram splits 126 

into successive branches, and using the length of the branches connecting two species as a 127 

measure of distance distorts the original trait distance between them compared to the 128 

distance obtained through ordination in the trait space. In addition, the choice of the 129 

clustering algorithm for generating the dendrogram will inevitably influence the outcome 130 

(Loiseau et al., 2017). 131 

 132 

The convex hull of trait space and the tree-based approach therefore make different 133 

computational trade-offs, and the appropriateness of the two approaches for measuring 134 

trait β diversity has been debated (Loiseau et al., 2017). In response to this debate and to 135 

incorporate information from all species, Mammola & Cardoso (2020) proposed another 136 

trait space approach where polytopes are defined by applying a threshold to the kernel 137 

density estimation (KDE; Figure 1; see details in Methods below). The resulting polytope is 138 

typically not convex, and its shape better reflects the distribution of species in the trait 139 

space. Although it has the potential to provide a more accurate estimate of trait diversity 140 

than the other two methods, this has not been formally assessed. The computational 141 

aspects when computing kernel densities have largely been overlooked. These aspects, as 142 

we plan to show here, are crucial so that all species contribute to β diversity in the 143 

communities. 144 

 145 

Here we propose a new trait space method, which we term the kernel integral method 146 

(KIM), for computing trait β diversity based directly on the integration of the KDE rather 147 

than on the polytope. We explore how the computational aspects of the KDE computation 148 

can influence the estimates of trait β diversity with different methods. For comparison of 149 

the existing and new methods, we use a set of theoretical examples for which we can justify 150 

how trait β diversity metric should behave. We further apply the KIM method to compute 151 

non-native plant trait turnover across islands and archipelagos of the Pacific Islands of 152 

French Polynesia and compare results with the other methods. 153 
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 154 

2. Methods 155 

 156 

2.1. Trait-space and tree-based approaches 157 

 158 

2.1.1 Convex Hull 159 

 160 

Computing trait turnover between two communities using the convex hull methods simply 161 

consists in computing (i) the minimum convex polytopes (MCP) for each community, and (ii) 162 

the hypervolumes of the intersection and the union of these two MCPs (Figure 1a,e). It is 163 

then possible to compute a range of β diversity indices based on these four values. Here, 164 

following Mammola & Cardoso (2020), we used the Jaccard dissimilarity index J (Jaccard, 165 

1908) and the Williams replacement index W (Williams, 1996), defined as: 166 

 167 

� � 1 �
���

���
       Eq.1 168 

� �
����	 ������,������

���
     Eq.2 169 

 170 

where A and B are the hypervolumes of the MCPs for two communities. In our analyses, we 171 

computed the MCPs and the indices using the hull.build() and hull.beta() 172 

functions from the BAT R package V.2.8.1 (Cardoso et al., 2015, 2022). The Williams 173 

replacement index evaluates the contribution of trait replacement to trait β diversity 174 

(Carvalho et al., 2012, 2013), and the difference between Jaccard and Williams indices 175 

quantifies how the trait richness difference between communities contributes to β diversity. 176 

Although there are other approaches and indices that can decompose β diversity into 177 

turnover replacement components, the relevance of these approaches is still debated 178 

(Baselga, 2010; Baselga & Leprieur, 2015; Cardoso et al., 2014; Carvalho et al., 2012, 2013). 179 

This debate is beyond the scope of this manuscript, and, to compare our methods, we only 180 

followed the decomposition used by Mammola & Cardoso’s (2020) (see sections on kernel 181 

density hypervolumes below), readily available from the BAT R package (Cardoso et al., 182 

2015, 2022).  183 

 184 
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The main issue with the convex hull methods is that it is insensitive to the addition or 185 

removal of species within the MCP in the trait space (Figure 1). A corollary is that it is 186 

sensitive to outliers, as they will define the MCP. 187 

 188 

2.1.2 Tree-based method 189 

 190 

The tree-based method consists in computing a dendrogram from the trait distance 191 

between all species in the species pool (i.e. the entire list of species over all included sites, 192 

not just those occurring in the pair of sites for each calculation of trait turnover; Figure 2a). 193 

Multiple clustering algorithms can be used to generate the dendrogram, but here we 194 

followed Loiseau et al. (2017) and used the unweighted pair group method with arithmetic 195 

mean (UPGMA) algorithm, using the hclust() function from the stats R package (R Core 196 

Team, 2022), as it has been shown to best conserve distances between species compared to 197 

the original distances in the trait space. 198 

 199 

For each site, a sub-tree including only the species present is generated by trimming the 200 

overall tree (Figure 2b,c). It is then possible to compute the trees corresponding to the 201 

union and the intersection of the two sub-trees (Figure 2d,e). We can then adapt Eqs 1 and 202 

2 to compute the Jaccard and Williams indices, by using the total length of remaining 203 

branches. Importantly, the sub-trees must be computed from the original tree generated 204 

from the entire species pool, not those computed from only the residing species. This 205 

conserves the internal branches in the union and the intersection of the two sub-trees, even 206 

if these internal branches do not lead to any present species (see branch h in Figure 2e). 207 

Therefore, for the example of Figure 2, Eqs 1 & 2 become: 208 

 209 

� � 1 �
���

���
� 1 �

���������

�������������
     Eq.3 210 

� �
����	 ������,������

���
�

����	 ��,��

�������������
    Eq.4 211 

 212 

The tree-based method therefore offers the advantage over the convex hull method that all 213 

species will be accounted for when computing the β diversity indices. However, the 214 

clustering algorithms often generate branch lengths between species in the dendrogram 215 
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that differ from the original distances in the trait space, which will necessarily influence the 216 

value of any β diversity index (Loiseau et al., 2017). 217 

 218 

2.1.3. Kernel density hypervolumes (KDH) 219 

 220 

Mammola & Cardoso (2020) introduced the use of kernel density hypervolumes (KDH) for 221 

computing indices of species turnover. This approach uses KDEs to generate polytopes that 222 

are often non-convex (and can even be disjunct) and can be seen as a trait envelope around 223 

the species points in the trait space. The recommended method is based on a Gaussian 224 

estimator of the KDE (Mammola & Cardoso, 2020) and follows a series of four steps (see 225 

Blonder et al., 2018 for further details): (i) points are drawn randomly within a hypersphere 226 

around each species point in the trait space; (ii) these points are resampled to uniform 227 

density; (iii) a KDE is computed from these points; (iv) a threshold (typically 95%) is applied 228 

to truncate the KDE and define the polytope, from which hypervolumes can be computed. 229 

The indices are then computed as per Eqs 1 & 2. In our analyses, we used the 230 

kernel.beta() function from the BAT R package V.2.8.1 (Cardoso et al., 2015, 2022) to 231 

apply the KDH method. 232 

 233 

This method, although more computationally intensive than the convex hull method, allows 234 

to account for the distribution of species points in the trait space to define the polytopes 235 

and therefore the hypervolumes used in the computation of the turnover indices (Figure 1b-236 

d,f-h). As a result, the KDH method is less sensitive to outliers. 237 

 238 

The KDH method nonetheless has some caveats. First, the choice of the threshold used to 239 

construct the polytope will necessarily influence the components of the β diversity indices, 240 

and therefore the final values. Second, by resampling random points to uniform density, 241 

some information about the distribution of species points in the trait space is lost. Finally, in 242 

the current implementation of the method in the BAT R package V.2.8.1 (Cardoso et al., 243 

2015, 2022), the radius of the hyperspheres within which random points are drawn around 244 

the species points and the bandwidth used during the computation of the KDE (the 245 

bandwidth is a parameter that determines how smooth the KDE will be) are determined 246 

based on the species point distribution of each community separately using the 247 
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estimate_bandwidth() function from the hypervolume R package. As a result, the 248 

more similar species are to each other, the closer random points will be to each other and 249 

the KDE will show a steeper gradient (Figures A1-A24, see especially Figures A1, A9 and 250 

A17). In other words, using different bandwidths and resampling random points to uniform 251 

density gives different weights to a species depending on how different its traits are from 252 

those of other species in the community. For a β diversity index to be unbiased we argue 253 

that all species should have the same weight when relative abundance and intraspecific trait 254 

variation are not concerned. 255 

 256 

2.2 A kernel integral method (KIM) 257 

 258 

Here we propose a novel computational method to compute trait turnover in the trait 259 

space, to solve the issues associated with the KDH method. Our method computes β 260 

diversity indices from the kernels themselves, therefore removing the influence of the 261 

threshold used to generate the polytope, and uses different kernels than those used in the 262 

KDH method. The KIM method consists of using only steps (i) and (iii) from the KDH method: 263 

(i) points (typically 1000, but the number can be adjusted to account for species abundance, 264 

for example) are drawn randomly within a hypersphere around each species point in the 265 

trait space (the diameter of the hypersphere can be the same for all species, or reflect 266 

intraspecific trait variability); (iii) a KDE is computed from these points, and rescaled 267 

between [0,1]. From the KDE, we then propose the following equations to compute the 268 

Jaccard dissimilarity index and the Williams replacement index: 269 

 270 

� � 1 �
� ��	 �����,�����

� ��� �����,�����
      Eq.5 271 

� �
����	 �� ������ ��	 �����,�����,� ������ ��	 �����,������

� ��� �����,�����
   Eq.6 272 

 273 

where KDEA and KDEB are the KDEs for communities A and B, and ∫ KDEA is the integral of the 274 

KDE for community A over all dimensions of the trait space. This is similar in essence to the 275 

index of niche overlap proposed by Mouillot et al. (2005). In practice, since KDEs are 276 

computed as multi-dimensional matrices, an integral is simply computed as the sum of all 277 



11 
 

elements of the matrix. The minimum and the maximum of two KDEs are analogue to the 278 

intersection and the union of the polytope in the KDH method (Figure 3). 279 

 280 

This kernel integral method enables us to overcome the limitations of the KDH method 281 

mentioned above. First, there is no need to define a threshold: if the KDE is estimated over a 282 

large enough area or volume, the local kernel density will approach zero and the integral 283 

will therefore converge. Second, the radius within which the random points are drawn is the 284 

same for all communities (but a suitable value must be chosen, which can be adjusted to 285 

account for intraspecific trait variability). Finally, because there is no resampling to uniform 286 

density, the distribution of species points in the trait space will be reflected more accurately 287 

in the KDE. 288 

 289 

2.3. Test of the different methods on theoretical data and expectations 290 

 291 

We have described above the theoretical advantages and caveats of each of the different 292 

methods. We implemented seven different methods in total to explore how the differences 293 

between the characteristics of the methods can influence the results (Table 1):  294 

• A convex hull method (hereafter COVHULL). 295 

• A tree-based method (hereafter TREE). 296 

• The original kernel density hypervolume method with community-specific 297 

bandwidths and uniform resampling (hereafter KDH V1). 298 

• A modified kernel density hypervolume method computed with the same bandwidth 299 

for each pair of communities and uniform resampling (hereafter KDH V2), to explore 300 

the influence of the bandwidth on the outcome. 301 

• A kernel integral method using kernel densities estimated with community-specific 302 

bandwidths and uniform resampling (hereafter KIM V1), to explore the influence of 303 

the kernel-based vs the polytope-based formulas (Figure 3). 304 

• A kernel integral method using kernel densities estimated with the same bandwidth 305 

for both communities within a pair and uniform resampling (hereafter KIM V2), to 306 

further explore the influence of the kernel-based vs the polytope-based formulas. 307 
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• A kernel integral method estimated with the same bandwidth for both communities 308 

within a pair and without uniform resampling (hereafter KIM V3). 309 

 310 

For each method, we computed Jaccard dissimilarity and Williams replacement, as defined 311 

in Eqs 1-6. We then examined how these seven methods behaved in a set of theoretical 312 

contexts for which we can make predictions of how an index of turnover should behave to 313 

capture trait differences between communities. 314 

 315 

In total, we simulated 72 different pairs of communities (Figures 4 and A1) and computed 316 

our 14 indices (the Jaccard and Williams indices for each of the seven methods) for each 317 

pair. For simplicity and computational efficiency, we used a trait space defined by two 318 

theoretical traits. Each community was first delimited by a MCP represented by four species 319 

arranged as a square. The MCPs were either of different sizes (square side of lengths 4 and 320 

2; Figure 4) or of the same size (square side of length 4; Figure A1). They were either nested 321 

within each other, partially overlapping, or disjunct. For each of these configurations, we 322 

generated a community by randomly drawing species points within the MCPs according to 323 

three patterns: (i) the species points were located in a small area (square sides of length 1) 324 

in opposite corners of the MCPs (hereafter called the “different” point distribution); (ii) the 325 

species points were randomly drawn within the MCPs (hereafter called the “random” point 326 

distribution); (iii) the species points were located in a small area (squares of length 1) in the 327 

closest corners of the MCPs (hereafter called the “similar” point distribution). We tested 328 

these 18 configurations for 10, 40, 70 and 100 species points, and performed analyses 50 329 

times for each of the resulting 72 configurations (2 MCP size setups x 3 relative positions x 3 330 

random point distributions x 4 sets of point numbers x 50 repeats = 72 configurations x 50 331 

repeats).  332 

 333 

There is one obvious difference between these theoretical communities and communities 334 

that would be analysed for real-world applications: real-world communities belonging to the 335 

same ecological system such as those described in the next section will usually share 336 

species, resulting in many species points overlapping in the trait space. Here we used 337 

independent random species distributions in the trait space for the two communities in 338 

order to have more flexibility in these species distributions, to explore in detail how each of 339 
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the seven methods would behave across a wide variety of extreme configurations, and 340 

better test disentangle the implications of their computational specificities. 341 

 342 

This flexibility allows us to describe how a β diversity index should behave based on what it 343 

is supposed to capture from these theoretical configurations. These expectations are 344 

depicted in Figures 5, A2, A3, and their justification provided in Table A1. In summary, 345 

Jaccard dissimilarity should increase as most species points in the two communities move 346 

away from each other. The replacement component should decrease if the difference in 347 

area covered by the two sets of species points increases. These patterns should be 348 

especially clear for large numbers of species, i.e. for high densities of species points. For few 349 

species and low species point density (e.g. when only 10 species points were randomly 350 

drawn in the trait space), we expect these patterns to be weak, as the stochastic element of 351 

the species point distributions may obscure the results. 352 

 353 

2.4. Established non-native plants in French Polynesia 354 

 355 

To examine how the different methods may lead to different conclusions when analysing 356 

real data, we examined the trait diversity of plant species introduced to the Pacific islands of 357 

French Polynesia, comparing trait turnover across islands and archipelagos using each 358 

method. We extracted data from PacIFlora (Wohlwend et al., 2021). For French Polynesia, 359 

PacIFlora contains data on naturalised non-native plant species across the 80 Pacific islands 360 

over five archipelagos: The Society Islands, the Gambier Islands, the Tuamotu Islands, the 361 

Tubuai Islands, and the Marquesas. However, careful examination of the database revealed 362 

that some species were not naturalised but cultivated or endemic. We therefore only used 363 

the 417 naturalised species in PaciFlora appearing in the Appendix of Fourdrigniez & Meyer 364 

(2008). 365 

 366 

For these 417 species, data on species woodiness (woody vs. herbaceous species), seed 367 

mass, plant height and specific leaf area (SLA) were extracted from multiple trait databases, 368 

including TRY (Kattge et al., 2011, 2020), LEDA (Kleyer et al., 2008), PLANTATT (Hill et al., 369 

2004), Austraits (Falster et al., 2021), BIEN (Maitner, 2022), EcoFlora (Fitter & Peat, 1994), 370 

and BROT (Tavşanoğlu & Pausas, 2018). Seed mass, plant height and SLA have been used to 371 
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characterise different plant life strategies (Díaz et al., 2016; Westoby, 1998). When different 372 

databases contained different values, we used the mean for seed mass, plant height and 373 

SLA, and the most frequent category for woodiness. Data on plant woodiness was available 374 

for all 417 species. Trait data for seed mass and plant height were only available for 250 out 375 

of the 417 species. Data for seed mass, plant height and SLA were only available for 124 out 376 

of 417 species. We therefore performed three sets of analyses: (i) a set for the 250 species 377 

with data on seed mass and plant height, (ii) a set for the 124 species with data on the three 378 

traits, and (iii) a set for the same 124 species, using data on seed mass and plant height only, 379 

to assess the robustness of the results to data availability and trait selection. In the 380 

following we present and discuss mainly results for seed mass and plant height for the 250 381 

species (see Figure D1 for the distribution of plant species in this two-dimensional trait 382 

space), as it represents more than half of the species and should be less biased despite using 383 

only two traits. 384 

 385 

Prior to analysis, seed mass, plant height and SLA were log-transformed and rescaled 386 

between [0,1], so that the traits would be more uniformly distributed in the trait space. We 387 

then computed the Jaccard dissimilarity and the Williams replacement indices for all species 388 

together, and for woody and herbaceous species separately, to have a more comprehensive 389 

assessment of potential differences between methods, as woody and herbaceous plants 390 

tend to characterise different parts of the global spectrum of plant forms and functions 391 

(Díaz et al., 2016). We also computed these indices for all French Polynesian islands, and for 392 

each archipelago separately. 393 

 394 

Finally, the behaviours of the different indices were analysed using randomisation tests. We 395 

randomised the presence-absence matrices for all islands and for each archipelago by 396 

keeping species occupancy and island richness constant (i.e. the sim9 algorithm from 397 

(Gotelli, 2000)), and compared the Jaccard dissimilarity and Williams replacement indices 398 

generated by the 7 methods for the original matrices to the indices computed over 10 399 

randomised matrices for each original matrix (the number of randomisations was 400 

constrained by computation time). 401 

 402 
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The purpose of these analyses on real data was only to examine how results may differ 403 

between methods for more complex data than used in the theoretical analyses, to assess 404 

each method’s range of sensitivity. As each archipelago contains multiple different islands 405 

whose combinations will fall across a large spectrum of trait profile configurations, it was 406 

not possible to define a priori expectations and the purpose is therefore not to determine 407 

which methods are in line or not with a priori expectations, contrary to the theoretical 408 

analyses. 409 

 410 

3. Results 411 

 412 

3.1. Theoretical data 413 

 414 

Overall, KDH and KIM tended to converge towards similar values and behaviours as the 415 

number of species points increased (Figures 6-8, C1-C12), corresponding to theoretical 416 

expectations (Figures 5, A2, A3). In contrast, the convex hull and the tree-based methods 417 

generated indices of turnover different from the other methods and from the theoretical 418 

expectations. The main differences between observed and expected values for all methods, 419 

except the tree-based method, were for the contribution of replacement to overall turnover 420 

(computed as the ratio of the Williams replacement index to the Jaccard dissimilarity index) 421 

for MCPs of the same size in the nested / random and the nested / similar configurations, 422 

which was lower than the expected value of 1 (Figures A3, C6). This is likely due to the fact 423 

these are the configurations for which the values of the Jaccard index are small, and small 424 

changes in Williams replacement index due to stochasticity in the distribution of species 425 

points in the trait space will be disproportionally large.  426 

 427 

For all indices of turnover, the three KIM methods generated values above 0.5 and above 428 

other methods when the point distributions were different from each other (i.e. the 429 

“Different” point distributions under all MCP configurations, and for all three point 430 

distributions under the “Disjunct” MCP configuration). KIM V3 generated values below 0.5 431 

and below other methods when the point distributions were similar from each other (i.e. 432 

the “Similar” point distributions under all MCP configurations), and intermediate values 433 
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otherwise, in-between the values generated by the other methods. These results suggest 434 

KIM V3 can better distinguish between different species point distributions in the trait space 435 

(Figures 6-8, C1-C12). The KIM V3 method also tended to be less sensitive to the number of 436 

species points than the other KDH and KIM methods, with values and behaviours being 437 

similar from 10 to 100 species points. 438 

 439 

When communities had MCPs of the same size, the KIM V1 and V2 methods generated 440 

similar results to the KDH V1 and V2 methods, respectively, for all β diversity indices 441 

(Figures C4-C6, C10-C12). However, when the MCPs had different sizes, the KIM methods 442 

tended to generate values more similar to each other than to the KDH methods (Figures 6-8, 443 

C1-C3, C7-C8). 444 

 445 

Adjusting the bandwidth to be common between communities in each pair in the 446 

computation of the kernels for the KDH and KIM methods (i.e. switching from V1 to V2) 447 

resulted in lower dissimilarity values, both for the Jaccard dissimilarity index and the 448 

Williams replacement index, for all configurations. This is because the radius of the 449 

hyperspheres and therefore the steepness of the kernels were the same for both 450 

communities in the V2 methods, increasing similarity. The effect of removing the resampling 451 

of random points to uniform density (i.e. from KIM V2 to KIM V3) had an often larger and 452 

more variable effect than adjusting the bandwidth, as the values generated by KIM V3 could 453 

be either larger, smaller or in between those of the KIM V1 and V2 methods. 454 

 455 

3.2. Established non-native plants in French Polynesia 456 

 457 

Raw values of Jaccard dissimilarity, of Williams replacement and of the contribution of 458 

replacement to turnover differed greatly between the different methods. Maximum 459 

differences in values between methods were around 0.6 for Jaccard dissimilarity, 0.2 for 460 

Williams replacement, and 0.8 for the contribution of replacement to turnover (Figures 9, 461 

C2, C3). The KIM V3 and the KDH V2 methods generated the lowest Jaccard dissimilarity, 462 

and KIM V1 and TREE the highest. In contrast, KIM V3 consistently generated much higher 463 

values for the contribution of replacement to turnover than other methods, as expected 464 

from the fact that it better accounts for differences in species point distributions in the trait 465 
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space. Results showed similar trends for all the combinations of traits and number of 466 

species used in the analyses (Figures D2, D3). 467 

 468 

Importantly, compared to the other methods, the KIM methods sometimes generated a 469 

different ranking between archipelagos for Jaccard dissimilarity. This is especially true for 470 

woody species, for which KIM V3 suggests that trait turnover was higher for the Gambier 471 

than for any other archipelagos, for all combinations of traits, and for both Jaccard and 472 

Williams replacement indices (Figures 9, D2, D3). By contrast, the other methods generated 473 

results that were more variable depending on the combination of traits and species used. 474 

 475 

Randomisation of presence-absence matrices show that the KDH V2, KIM V2, KIM V3 and 476 

Tree methods tended to generate more consistent values for Jaccard dissimilarity compared 477 

to the convex hull, KDH V1 and KIM V1 methods (Figure D4). For Williams replacement, 478 

values were also more consistent across randomised matrices for KIM V3 than for the other 479 

methods, especially for herbaceous species. 480 

 481 

4. Discussion 482 

 483 

Here we compared existing and novel methods to compute trait turnover for simulated and 484 

empirical data, to illustrate how differences in the computational aspects of these methods 485 

reflect different aspects of trait diversity and can affect inferences made from trait diversity 486 

comparisons.  487 

 488 

4.1. Theoretical aspects of trait turnover computation 489 

 490 

Comparing the seven methods using simulated data, for which we had complete control of 491 

the community trait profiles in the trait space, revealed the important effects of the 492 

computational specifics of each method on the value of trait β diversity. In particular, we 493 

assessed the effect of conserving trait distance between species by comparing the tree-494 

based method, which distorts the trait distance between species in the dendrogram (Maire 495 

et al., 2015), to the trait space-based methods. The tree-based method consistently 496 
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generated results most different from theoretical expectations (Figures 5-8). It tended to 497 

either underestimate or overestimate dissimilarity in the trait profiles of communities in the 498 

MCPs, and tended to generate high values for the Williams replacement index. 499 

 500 

Interestingly, the convex-hull methods produced results similar to the tree-based method 501 

for Jaccard dissimilarity, also generating results that differed from theoretical expectations. 502 

This is because CONVHULL only uses a subset of the species in the trait space. Although 503 

using a trait space approach better conserves trait distance between species than a tree-504 

based approach when all species are included, this property is broken when species are 505 

ignored in the computation of trait turnover. Therefore, although the CONVHULL and tree-506 

based methods have been contrasted in the literature and have been shown to generate 507 

different results (e.g. Loiseau et al., 2017), we show that neither of these two methods 508 

accurately reflects the trait profile of a community. 509 

 510 

In contrast, the other five trait space methods compared in this article (KDH V1-V2 and KIM 511 

V1-V3) generated results more in line with theoretical expectations. These methods 512 

therefore offer a more consistent representation of the community trait profile in the trait 513 

space, i.e. they better capture the contribution of all species to the assessment of turnover. 514 

The computational aspects of these approaches to estimating trait turnover have 515 

nonetheless important effects on the generated β values, with potential consequences for 516 

inferences about made trait turnover in an assemblage or community.  517 

 518 

Specifically, we explored three computational aspects of these methods: (i) the use of 519 

polytopes vs kernel integrals (KDH V1 vs KIM V1; Eqs 1 & 2 vs Eqs 5 & 6); (ii) the use of the 520 

same or different bandwidths for each community in a pair when computing the KDE (KDH 521 

V1 vs V2 and KIM V1 vs V2); and (iii) the use of point resampling when computing the KDE 522 

(KIM V2 vs V3). All three aspects proved to have important effects on the β diversity values 523 

calculated. Using kernel integrals, the same bandwidth and not resampling (i.e. using KIM 524 

V3) generated results most in line with theoretical expectations.  525 

 526 

The respective effects of these three computational aspects on trait turnover (β values) 527 

depend on the index used (Jaccard dissimilarity or Williams replacement) and on the 528 
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configuration of the community trait profiles. For example, Jaccard dissimilarity is sensitive 529 

to the difference in bandwidth between communities (Figure 6). This is because using 530 

different bandwidths changes the shape of the KDEs (akin to making the distributions larger 531 

or narrower in Figure 3) and generates polytopes with different areas (akin to changing the 532 

lengths of A and B in Figure 3). Consequently, Jaccard dissimilarity values reflect this 533 

artificial difference in trait richness, but not by Williams replacement. In contrast, for 534 

Williams replacement, the use of polytopes or kernel integrals proved to be the most 535 

important factor (Figure 7). This is because kernel integrals better reflect small variations in 536 

the shape of the KDE (akin to changing the shape of the distributions and the overlapping 537 

area in Figure 3) and thus better capture trait replacement. Similarly, resampling also 538 

affected Williams replacement for communities with an “overlapping” configuration (Figure 539 

7), especially for species-poor communities. This is because, when compared to the more 540 

uniformly distributed trait profile of species-rich communities, each species has a greater 541 

weight on the shape of the trait profile in species-poor communities, and the idiosyncrasy in 542 

the position of different species can drastically change trait profiles if resampling is not 543 

applied. 544 

 545 

Both trait envelope, as captured by a convex hull, and kernel-based community trait profiles 546 

have complementary uses, and the choice of an analytical approach will depend on the 547 

research or management question. On the one hand, species with extreme trait values 548 

defining a trait envelope for a given community can help capture the whole range of trait 549 

values of species that may potentially join the community. The trait envelope may therefore 550 

be an important piece of information to assess the risk of potential invaders to a region ( 551 

e.g. the join the locals vs. the try harder hypothesis; Tecco et al., 2010), or an indicator of 552 

the loss of trait extremes. The CONVHULL method is appropriate for such applications. On 553 

the other hand, capturing the trait distribution of all species in a community in the trait 554 

space provides a more comprehensive description of trait diversity and is necessary for 555 

identifying community assembly processes (Falster et al., 2017). The distributional profile of 556 

species in the trait space can also highlight gaps within the trait envelope, where introduced 557 

species with corresponding traits could have a higher chance to establish (i.e. the “empty 558 

niche hypothesis”; MacArthur, 1970; Molofsky et al., 2022). This community trait profile 559 

thus reflects ecosystem resilience and trait redundancy (Hui et al., 2021; Mouillot et al., 560 
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2021). Our results suggest that the KIM V3 method is most informative and least biased for 561 

addressing trait diversity questions. 562 

 563 

4.2. Empirical test of methods using plant data from French Polynesia 564 

 565 

The empirical testing of these methods provided further insight on the behaviour of the 566 

different methods for a mixture of configurations of species points in the trait space (Figure 567 

D1), and on how using different indices can lead to different conclusions. The KIM V3 568 

method consistently generated much higher values for the contribution of replacement to 569 

turnover than other methods, even when randomising site-by-species matrices (Figures 9, 570 

D2-D4), suggesting that the higher Jaccard dissimilarity values generated by the other 571 

methods may reflect an overestimation of the contribution of trait richness difference (the 572 

complement of replacement) to turnover. Importantly, depending on the method used, one 573 

could either conclude that most islands of an archipelago are very different from each other 574 

in terms of trait diversity (e.g. Jaccard dissimilarity values > 0.5 for KIM V1 for the Gambier, 575 

Tuamotu and Society archipelagos), or very similar (Jaccard dissimilarity values mostly < 0.2 576 

for KIM V3). These different conclusions, in addition to the different rankings generated by 577 

the different methods could be crucial for conservation decisions. For example, assuming 578 

management actions are influenced by species traits, low trait dissimilarity between islands, 579 

as indicated by KIM V3, would suggest that a similar management approach is appropriate 580 

across most islands, simplifying management and potentially improving management 581 

efficiency. In addition, the high contribution of replacement to turnover suggests that 582 

existing differences in community trait profiles are unlikely to be the result of differences in 583 

colonisation pressure, and may point towards either idiosyncratic or niche-driven factors. 584 

 585 

5. Final recommendations / Conclusion 586 

 587 

The kernel integral method presented here computes trait β diversity by directly integrating 588 

KDEs. Out of the three different indices this method can generate, KIM V3 implements the 589 

same bandwidth for the paired communities without resampling random points to uniform 590 

distribution. KIM V3 generates values that better reflect the distribution of species in the 591 
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trait space (i.e. the community trait profiles) than methods based on convex hulls or 592 

dendrograms, and also better than other methods based on KDEs. The approach is also 593 

flexible, information rich and readily adapted to account for relative abundance between 594 

species and intraspecific trait variation, by using different numbers of random points and 595 

radii to generate the KDEs. Together with the convex hull method to inform on the trait 596 

envelope, and tree-based approaches for quantifying phylogenetic diversity, and the kernel 597 

integral method using the same bandwidth and non-uniform point distribution provide a 598 

complementary set of metrics for understanding patterns of trait diversity and turnover. 599 

 600 
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Tables 817 

 818 

Table 1. Summary of the methods used to compute trait turnover. 819 

Method Summary Advantages Caveats References 

Convex hull 

method 

(COVHULL) 

A minimum convex polytope (MCP) 

encompassing all species points in the 

trait space is computed for each 

community. The hypervolumes are 

used in the computation of the β 

diversity indices. 

The distance between the original 

species points in the trait space is 

representative of how 

functionally different the species 

are. 

Only the species with extreme trait 

values are used in the computation 

of the β diversity indices. Sensitive 

to outliers. 

(Cornwell et 

al., 2006; 

Villéger et 

al., 2008, 

2013) 

Tree-based 

method 

(TREE) 

A dendrogram is computed for the 

species pool based on the distance 

between all species based on their 

traits. The resulting tree is trimmed 

for each community, and the lengths 

of branches are used in the 

computation of the β diversity indices. 

All species contribute to the 

computation of the β diversity 

indices. Not as sensitive to 

outliers as the convex hull 

method. 

The distance between the species 

computed from the dendrograms 

is somewhat different from the 

original trait difference between 

species for the traits considered in 

the analyses. 

(Cardoso et 

al., 2014) 

Kernel 

density 

hypervolume 

(KDH) V1 

A polytope is computed for each 

community based on a kernel density 

estimator (KDE). The hypervolumes 

are used in the computation of the β 

diversity indices.  

The distance between the original 

species points in the trait space is 

representative of how 

functionally different the species 

are. The polytope accounts for 

how species are distributed in the 

trait space. 

Sensitive to the threshold used to 

compute the MCP. The random 

points are resampled to uniform 

distribution, which diminishes the 

effect of the species point 

distributions in the trait space. A 

different bandwidth is used for 

each community to generate the 

random points and compute the 

KDE. As a result, the KDE is 

influenced by the distance 

between the species in the trait 

space. 

(Mammola 

& Cardoso, 

2020) 
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Kernel 

density 

hypervolume 

(KDH) V2 

As KDH V1, but using the same 

bandwidth for each pair of 

communities. 

As KDH V1, plus independence 

from how different species are 

from each other in each 

community. 

As KDH V1, except for the issue 

related to using different 

bandwidths. 

This article 

Kernel 

Integral 

Method 

(KIM) V1 

The β diversity indices are directly 

computed from KDEs of species points 

in the trait space. The KDEs are based 

on the same procedure as KDH V1. 

As KDH V1, but with the advantage of being insensitive to the threshold 

used to compute the MCP.  

This article 

Kernel 

Integral 

Method 

(KIM) V2 

As KIM V1, but using the same 

bandwidth for each pair of 

communities. 

As KDH V2, but with the advantage of being insensitive to the threshold 

used to compute the MCP. 

This article 

Kernel 

Integral 

Method 

(KIM) V3 

The β diversity indices are directly 

computed from kernel density 

estimators of species points in the 

trait space, but the KDEs are 

estimated directly from points 

randomly drawn around species 

points in the trait space, without 

resampling to uniform density. 

As KDH V1 & V2, but reflecting more accurately the distribution of 

species points in the trait space. The radius of the hyperspheres still 

needs to be determined. 

This article 
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Figures 822 

 823 

 824 

 825 

 826 
Figure 1. Summary of the trait space approaches for two communities with different species 827 

in a two-dimensional trait space. a,e) The convex hull remains the same irrespective of the 828 

additional species present in community 2, resulting in the same outcome when computing 829 

β diversity metrics. b,f) The KDH (kernel density hypervolume) method generates a polytope 830 

for each community, whose shape will vary with the absence or presence of the additional 831 

species in community 2 and is often non-convex. As a result, the outcome of the Jaccard 832 

dissimilarity or the Williams replacement formulas will differ. c,d) KDEs corresponding to the 833 

polytopes in (b). g,h) KDEs corresponding to the polytopes in (f). 834 
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 836 
Figure 2. Components of the tree-based approach for the computation of trait turnover 837 

between two sites whose species are part of a larger species pool. a) Dendrogram for all 838 

species in the species pool. b) Dendrogram for species present in site A, after trimming the 839 

global tree from a). c) Dendrogram for species present in site B. d) Dendrogram for species 840 

present in either site A or site B. Since species 3 does not occur at any of the two sites, 841 

branch d is not included. e) Dendrogram for species present in both sites A and B. Although 842 

species 4 and 5 are present in only one of the two sites, branch h appears in both 843 

dendrograms, and is therefore conserved. 844 
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 846 
 847 

Figure 3. Details of the computation of trait turnover for two pairs of communities (one pair 848 

in (a) and one in (b)) following different approaches. In each graph (a,b), the curves fictional 849 

KDEs (Kernel density estimators) for the two communities, in one dimension (for 850 

simplification, we assume their densities are 0 beyond intersecting the horizontal axis). 851 

Using the KIM (Kernel integration method) formula, The Jaccard index is computed as one 852 

minus the area in grey divided by the striped area (Eq. 5), and the value is different for the 853 

two pairs of communities in (a) and (b) (as is the value of Willams replacement index, Eq. 6). 854 

(c) The horizontal segments represent one-dimensional polytopes (defined using the values 855 

where the KDEs intersect the horizontal axis for simplification), used to compute the Jaccard 856 

or Williams indices using the KDH (kernel density hypervolume) method (Eqs 1, 2). Contrary 857 

to KIM, the KDH method only generates a single value for each index for the two pairs of 858 

communities. 859 
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 861 
 862 

Figure 4. One of the 50 instances of the nine theoretical configurations of pairs of 863 

communities for different sizes of the MCPs (see Figure A1 for same size MCPs), using only 864 

10 randomly drawn species points for clarity (point distributions for 40, 70 and 100 species 865 

were also generated). We varied how the MCPs overlapped (“nested”, “overlapping” or 866 

“disjunct”), and how the species points are distributed within the MCPs (“different” – 867 

distributed in opposite corners of the MCPs –, “random” – randomly distributed within the 868 

MCPs – or “similar” – distributed either within the same small area, or in the closest corners 869 

of the MCPs).  870 
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 872 

 873 
 874 

Figure 5. Qualitative differences in β values for trait turnover predicted under different 875 

simulated configurations of species points in the trait space when the MCPs of the two 876 

communities have different sizes. Jaccard dissimilarity (squares, solid lines), Williams 877 

replacement (triangles, dotted lines), and contribution of replacement to overall turnover, 878 

computed as Williams replacement divided by Jaccard dissimilarity (circles, dashed lines). 879 

Overall, β values, are expected to decrease as the overlap between the trait profiles of the 880 

two simulated communities increases. Jaccard dissimilarity accounts for differences in the 881 

spread of the trait profiles in the trait space (i.e. trait richness), whereas Williams 882 

replacement is independent from differences in trait richness. For detailed explanations 883 

about the changes in β values, see Table A1 in SI. 884 

 885 
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 887 
Figure 6. Differences in Jaccard dissimilarity between the seven methods summarised in 888 

Table 1, for MCPs of different sizes, for 10 and 100 species points (see Appendix C for the 889 

full set of results). 890 
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 892 
Figure 7. Changes in Williams replacement index for the seven methods summarised in 893 

Table 1, for MCPs of different sizes, for 10 and 100 species points (see Appendix C for the 894 

full set of results). 895 
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 897 
Figure 8. Changes in the contribution of replacement to overall turnover, computed as 898 

Williams replacement divided by Jaccard dissimilarity, for the seven methods summarised in 899 

Table 1, for MCPs of different sizes (see Appendix C for the full set of results). 900 
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 902 
 903 

Figure 9. Application of seven trait turnover methods to empirical data on French 904 

Polynesian plant species. Jaccard dissimilarity index, Williams replacement index, and 905 

contribution of replacement to overall turnover, computed as Williams replacement divided 906 

by Jaccard dissimilarity, for the seven methods summarised in Table 1, for French Polynesia 907 

(FP) and its archipelagos, for all species, woody species and herbaceous species, using seed 908 

mass and plant height, for 250 out of 417 species (see Figures C2 and C3 for using seed 909 

mass, plant height and SLA on 124 species, and seed mass and plant height on 124 species). 910 

Note that the order of the islands is arbitrary, and lines between symbols are used as a 911 

visual aid and not to depict continuous change. 912 


