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Abstract
Risk maps are a useful tool to prioritise sites for management and allocate resources where they are
most needed as they can show us where impacts of biological invasions are most likely to happen or
expected to be largest. Given the pace of global changes, we need to understand not only the risks under
current conditions, but future risks taking into account aspects such as climate change. In this study, we
use Australian acacias alien to South Africa as a case study to model their potential distribution under
climate change scenarios, and map their potential impacts and the uncertainty related to variability
across socio-economic pathways and climatic models, to help us set better priorities for the future. We
found that although climatic suitability and therefore the potential high risk area is predicted to decrease
under climate change, the highly vulnerable fynbos biome remains an area with high projected impacts.
We found that potential impacts would decrease under climate change within protected areas of the
Western Cape. However, in this province, national parks and other areas with high levels of protection
would experience greater impacts than private protected areas of lower protection status. This can help
us prioritise management actions and aid the development of suitable plans to protect biodiversity not
only under current, but also future climate conditions.

Introduction
Biological invasions and climate change are two of the main drivers of global biodiversity loss (Master
and Norgrove 2010; Johnson et al. 2017; IPBES 2023). Impacts of biological invasions are manifold,
including changes to ecosystem functions such as fire regimes and hydrology and changes to
biodiversity including extirpations and extinctions of native species (Vilà et al. 2011; Smith 2020; Vilà et
al. 2024; IPBES 2023). Similarly, climate change can have severe impacts on native species, for example
increasing their risk of extinctions (e.g., Thomas et al. 2004; Manes et al. 2021) and causing range
changes (e.g., Lenoir et al. 2008; Doak et al. 2010). While these drivers can act in isolation, climate
change can also affect the invasion of alien species as climatic conditions play an important role in the
growth, survival and distribution of species (Walther et al. 2009; Master and Norgrove 2010). Climate
change can not only lead to changes in native species distributions, but also those of alien species
(Bellard et al. 2013).

Member states of the Convention on Biological Diversity (CBD) are mandated to improve the protection
of natural resources under the Kunming-Montreal Global Biodiversity Framework (GBF). Target 1 asks to
minimize the loss of areas with high biodiversity. To achieve this, we need to understand the pressures
on these areas from drivers such as climate change and biological invasions, and map them to prioritise
control. Risk maps have been used for various purposes in invasion science. For example, they can be
useful to improve detection of new incursions or individuals of species with limited populations (Kaplan
et al. 2014). They have also been used to map the potential impacts to assess sites experiencing the
highest current or potential impact, translating to sites at risk of invasion impacts (Nentwig et al. 2010).
However, as species’ distributions are expected to change with climate change, considering only current
climatic conditions in such risk maps does not prepare us well for future risk scenarios. Therefore, to
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improve our ability to manage biological invasions, as stipulated under Target 6 of the GBF, we need to
understand how biological invasions and their impacts could change under climate change.
Simultaneously, this addresses Target 8, which aims to minimize the effect of climate change on
biodiversity. Still, climate change is not routinely included in risk assessments for alien taxa (but see
Marchioro and Krechemer 2021 for some insect pests).

Correlative species distribution models (hereafter SDM) are popular in various fields of ecology and are
increasingly used in invasion science (Guisan et al. 2014). They are statistical methods which correlate
known occurrences of species with environmental variables and predict a species' potential distribution
in other regions over space and time (Guisan and Zimmermann 2000). The advantages of SDMs are
manifold as they are easy to implement and can cover large geographic areas. Therefore, they are widely
used to produce maps of potential invasion by delineating areas based on climatic suitability for a
species (e.g. Bradley et al. 2010; Jiménez-Valverde et al. 2011; Tingley et al. 2017). Despite known
limitations (see for example Hui 2023), they have shown potential for accurate prediction of alien
species spread (Barbet-Massin et al. 2018) and response of biological invasions to climate change
(Sheppard et al. 2014) if properly calibrated.

In this study, we use Australian Acacia species alien to South Africa as a case study to assess i) the
current distribution of the species and their potential impacts, ii) the potential distribution under current
climate, and iii) the projected future distribution under climate change scenarios. By overlaying the
outputs of the models with the species potential impacts, we produce risk maps for current and
projected future climatic conditions and assess potential impacts for protected areas of the Western
Cape Province in South Africa.

Methods
We detail below how we selected Australian Acacia species and fitted SDM models per species that
were then used to project the habitat suitability across South Africa per time horizon, accounting for
various climatic scenarios. Then, we explain how we aggregated an impact score from the species-wise
SDM projections and the documented impacts per species.

Species selection
We selected, as a case study, Australian Acacia species (Acacia Mill. sensu stricto – synonym: Acacia
subg. Phyllodineae (DC.) Seringe) which are alien in South Africa. This includes 33 species (Magona et
al. 2018; Jansen and Kumschick 2022; Kumschick and Jansen 2023; Supplementary Material Appendix
S4.1), of which three species (Acacia crassiuscula, A. acuminata and A. koa) had to be excluded from all
analysis because they had less than 10 presence records after the filtering steps detailed below. Acacias
are among the most highly impacting alien taxa in South Africa with a diverse range of impacts on native
biodiversity (le Maître et al. 2011; Kumschick & Jansen 2023).

Occurrence data



Page 4/21

We gathered distribution data from the native and introduced ranges of the 30 Acacia species, and used
it along with bioclimatic variables to build individual ensemble models which were then projected based
on current and future climate in South Africa. For each species, worldwide occurrence data were
obtained from the Global Biodiversity Information Facility (GBIF, http://www.gbif.org/) using the rgbif
package (Chamberlain et al. 2022). For this extraction, we kept all records which had complete
coordinates, which were tagged as “presence”, and which were either human or machine observations or
coming from the literature. No time limit was specified. Then we filtered occurrences to reduce the
uncertainty arising from questionable records and only kept records which came from a list of 65 trusted
GBIF datasets. This list was previously developed for the global distribution of Acacia species (Botella et
al. 2023) and is composed of datasets which include at least one documented step of taxonomic
verification in the recording of the occurrences. The documented native and introduced countries of
each species were also obtained from that study. Besides, we extracted the global land cover raster
(approx. 300 m resolution) from the European Space Agency GlobCover product. We excluded records
located outside the native and introduced countries of the species (obtained from Botella et al. 2023) or
whose 4 km x 4 km cell was located in urban areas based on the GlobCover 2009 global land cover
raster (ESA and UCLouvain GlobCover 2009 Project, last accessed 29/01/2024). The latter step was
implemented to exclude planted trees. More precisely, we excluded cells classified as “Artificial surfaces
and associated areas (Urban areas > 50%)” by GlobCover. We then resampled our remaining records to
keep only up to one record per 4 km × 4 km cell for each species to reduce the oversampling of some
areas (Boria et al. 2014). We obtained a total of 37,940 filtered records (Figure S4.1 & S4.2). The number
of filtered records were imbalanced across the 30 considered species, with 27 for the least sampled (A.
adunca) and 3,738 for the most sampled (A. dealbata).

Climate variables
To estimate the climatic suitability for each Acacia species from their occurrence data, we extracted four
bioclimatic variables from the Climatologies at High Resolution for Earth’s Land Surface Areas database
(CHELSA, Karger et al. 2017). We chose the mean annual air temperature (bio1), mean diurnal air
temperature range (bio2), annual precipitation (bio12) and precipitation seasonality (bio15) as
environmental variables as they are likely to affect plant productivity and survival across the landscape
(Mod et al., 2016), and the correlation between each of these variables was moderate (Pearson’s |r| <
0.55). These data are available globally at a 4 km × 4 km resolution for the period 1981–2010.

Then, we predicted the suitable climatic range of each species per time period in South Africa. The
“current” South African climate was derived from the 1981–2010 period and the “future” climate was
decomposed in two horizons: mid-century (2041–2070) and end of the century (2071–2100). For both
time horizons, we extracted the four climatic variables based five Global Climate Models from CHELSA
(“gfdl-esm4”, “ipsl-cm6a”, “mpi-esm1”, “mri-esm2”, “ukesm1”) for three shared socio-economic pathway
scenarios (“ssp1.26”, “ssp3.70” and “ssp5.85”) for the South African region: ssp1.26: scenario with low
greenhouse gas (GHG) emission; ssp3.70: scenario with high GHG emission; ssp5.85: scenario with very
high GHG emission (Fig. 1 and Supplementary Material, Appendix S1).



Page 5/21

Species distribution models
Pseudo-absences selection

For each species we drew ten datasets of pseudo-absences composed of the same number of pseudo-
absences as presences. For species with less than 100 presences, we increased the number of pseudo-
absences to 100 in each dataset, to reduce the variance (over-fitting) of each model. These pseudo-
absences were drawn in the countries being part of the native and introduced ranges of the species
assuming that the species likely had an opportunity to establish at pseudo-absence locations. Following
recommendations of Barbet-Massin et al. (2012), pseudo-absences were selected based on the surface
range envelope method (Busby 1991), by randomly selecting pseudo-absences outside the usual
climatic range of the species occurrences (Thuiller et al. 2009). Given that pseudo-absences were drawn
in the native and introduced ranges but outside of the climatic envelope where the species occurrences
were recorded (PA.sre.quant = 0), we can assume false absences to be rare. Therefore, the final model
predictions will approximate the probability of presence conditional to the species presence in the area,
i.e. an establishment probability.

Model implementation

For each species we built a species distribution model using functions and workflow of the biomod2
package (Thuiller et al. 2009). We applied a random forest classifier (Liaw and Wiener 2002) on the
presence/pseudo-absence datasets and the four climatic variables to decipher which climatic conditions
are suitable for each species. Each forest was composed of 500 trees, where each branch tests two
randomly picked variables (mtry = 2), and we impose a minimum of five sampled presence/pseudo-
absences per terminal node. We implemented a step of cross-validation for which the presence/pseudo-
absence dataset was divided into four blocks along the longitude axis with presences equally balanced
between each block (Wenger and Olden 2012). Then, three blocks were used for model training and one
for testing. This approach allows for spatial and environmental independence between training and
testing sets. Kappa and TSS metrics were computed each time on the testing dataset. As we had ten
pseudo-absence datasets and four blocks, we computed 40 random forest models for each species.

For each species we kept only the random forest models with a Kappa and a TSS over 0.7, indicating a
robust predictive capacity, and which we refer to as sub-models. We then derived for each species an
ensemble of its sub-models that was a “committee averaging” of the binarized responses given by the
sub-models (Thuiller et al. 2009). We used a probability threshold of 0.5 to binarize each submodel
response, corresponding to a majority vote among trees of the corresponding random forest. Committee
averaged values are the proportion of sub-models predicting the species as present. Here, we
considered that committee averaged values can be regarded as a proxy for the probability of a species to
establish. Thus, we obtained one projection of establishment probability for South Africa under the
current climate and 15 scenarios (five global climate models x three socio-economic pathways) for each
time horizon (2041–2070 and 2071–2100) as represented in Fig. 1. So, for each time horizon and each
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spatial cell, we averaged the 15 establishment probabilities of the 15 scenarios to obtain the final
establishment probability of the species in that cell. This final establishment probability gives an equal
weight to the 15 plausible scenarios. Finally, for each time horizon, we produced a potential Acacia
species richness map summing the 30 species establishment probability maps, and an associated
uncertainty map. The uncertainty map shows standard deviation of the potential richness estimate
based on the variability standard deviation of the predicted establishment per species and its variability
across the 15 scenarios.

Risk maps
As we aimed to map the accumulated risk of Acacia species potentially causing impacts in different
regions in South Africa, we firstly derived a potential impact score per species based on its documented
impacts. Data on the impacts of the Acacia species were taken from Jansen and Kumschick (2022).
They assigned categories of Minimal Concern to Massive to each species, based on the impacts
reported in the literature and following the International Union for the Conservation of Nature (IUCN)
standard for impact classification, the Environmental Impact Classification for Alien Taxa, EICAT
(Blackburn et al. 2014; Hawkins et al. 2015; IUCN 2020a, b; Volery et al. 2020). We used the maximum
impact category per species as a precautionary measure, which is the recommended approach used by
the IUCN EICAT Standard (IUCN 2020a; Kumschick et al. 2024), noting that other calculation methods
are possible depending on the aim of the study (see also Kumschick et al. 2024, Boulesnane-Genguant
et al. in prep). We transformed the impact categories into numerical values as follows: Minimal Concern
(MC) = 0, Minor (MN) = 1, Moderate (MO) = 2, Major (MR) = 3, Massive (MV) = 4. 19 species classified as
Data Deficient (DD), i.e. no data on impact was found in a comprehensive literature search, and they were
assigned a score of 0 (Supplementary Material Appendix S4.1).

As a prediction of local impact risk per species, we multiplied the predicted establishment probability
derived from the SDMs in each grid cell by the species impact score. Finally, we summed up the local
impact risks across species in each grid cell to obtain the impact risk map (see also Nentwig et al.
2010). Hence, each species occurring adds to the risk of the potential impacts actually manifesting at
that site, again using a precautionary approach. Our maps therefore do not represent sites where
impacts are definitely going to occur, as the potential establishment of each species alone does not
necessarily happen and, even if it does, it does not necessarily result in the worst impact documented for
that species. Other factors such as the recipient community and the abundance of the alien species play
important roles in the manifestation of impacts. Note also that even if data deficient species are present,
they do not affect the impact risk value, as for species whose maximum impact is MC. This might
underestimate the impact of some species which actually cause higher impacts but which have not been
studied.

Changes in impact risk in protected areas
To assess the specific change in risk across time on protected areas, we assessed the potential changes
of impact risk for protected areas in the Western Cape Province of South Africa. For each protected area,
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we calculated the mean impact risk score and compared it under current and future (2071–2100)
projected climate. To see whether differences could be found based on the protected area status, we
also calculated the mean impact risk score per protected area type. In the Western Cape, protected areas
are classified as follows (with increasing level of protection): private nature reserves, provincial nature
reserves and national parks. We obtained protected areas data from the South African National
Biodiversity Institute (www.bgis.sanbi.org).

Results
Firstly, we present a method to map the potential cumulative impacts of alien species under climate
change projections (Fig. 1, Supplementary Material, Appendix S1). It combines the recorded impacts
alien species have had with the projected species richness. Applying this method to Acacia species in
South Africa, we find that across all species currently present in the country, the suitable area declines
over time and only the south coast in the Eastern Cape province and parts of the Western Cape province
still remain suitable for a considerable number of species (Fig. 2). Large parts of the north eastern (NE)
part of the country are predicted to become unsuitable for most wattles in future. Indeed, while the
current projected impact score lies between 15 and 25 in a relatively large part of the NE area, it is
inferior to 5 in nearly all of the area for the end of the century (Fig. 2). Yet, this decrease should be
interpreted with caution, as the standard deviation of the end-of-century impact score, due to the
variability across socio-economic pathways and climate models, is around 2 in the NE area that currently
shows a high risk (Figure S3). Comparing the current impact risk map to a risk map based on actual
records for Acacia species (Fig. 3), the general pattern looks similar to potential impacts under current
climate, with a less continuous distribution along the east coast, and a marked region of high risk in the
Gauteng province. The latter is probably due to the fact that in the map showing impacts based on
recorded occurrences, urban areas were not excluded, and much of the Gauteng province would fall
under this category (Fig. 3). Furthermore, a positive sampling bias in this highly populated area might be
responsible for higher detection rates of the species present and explain the relatively high impact risk
when based on actual occurrences.

[insert Fig. 2 here]

[insert Fig. 3 here]

Although species richness of Acacias is not projected to be as high in the southwestern part of the
country as along the south coast, the projected risks are similar in both areas (Fig. 2). That shows that
the areas around Cape Town and Hermanus, although not suitable for as many species, might remain
suitable for the high impacting species. The impact score in this area remains most likely high compared
to other areas even when considering its standard deviation (Figure S3).

We found that potential impacts would decrease under climate change within protected areas of the
Western Cape. Our results showed a lower impact risk with climate change for protected areas along the
coast line, almost no change for northern protected areas and a higher impact risk in few isolated
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protected areas (Fig. 4). However, the impact risk differed according to the protection status. The impact
risk remains high in areas of high protection status (such as national parks) and low for private
protected areas (with lower protection status) (Fig. 5).

Discussion
This study presents, to the best of our knowledge, a first attempt at combining impacts of alien taxa with
their projected distribution under climate change to produce risk maps for future climatic scenarios. Our
results indicate that the projected suitable areas for alien Acacia species in South Africa are reduced
under climate change (Fig. 2). This is similar to a study looking at A. mangium and A. auriculiformis in
Brazil, where they found a shift in potential distribution and a reduction in suitable area (Heringer et al.
2019). More generally, this is in line with Bellard et al. (2018) who showed in a review of 71 papers
covering 423 alien species that climate change is more frequently projected to contribute to a decrease
in range size than an increase. However, to assume that the problem of Acacia invasions is going to sort
itself out over time might be a bit too optimistic. For once, the sites at highest risk are also the regions
where the highly vulnerable fynbos biome is located. This biome is already under pressure from the
effects of climate change, including increased temperature and drought, and therefore more vulnerable
to other pressures (Slingsby et al. 2017; Skowno et al. 2021).

Furthermore, Acacia species which are not currently alien in the country (not yet introduced) were not
modelled in this study. That means that other species not in our dataset might behave differently from
what we present here. Therefore, this does not exclude the possibility of other Acacia species, and other
alien species in general, becoming more problematic in future (see also Sheppard et al. 2016).
Furthermore, Acacias and trees in general are long lived species which can result in a long lag between
reduced climate suitability and decline in populations or observed reduction in impacts (Kowarik 1995;
Robeck et al. 2024). Besides, perennial and predominantly allogame plants like Acacia species often
exhibit lag phases of several decades before the beginning of an invasion (Robeck et al. 2024). Hence,
several Acacia species could still be in a lag phase preceding an invasion in South Africa, and this
invasion debt was not accounted for in the trends presented here (e.g., Rouget et al. 2016).

As with any model, there are uncertainties linked to the projections. SDMs are based on several strong
assumptions (Guisan et al. 2017; Hui 2023). First, occurrence records should reflect the true
performance of the species. However, sampling biases are present in most if not all record databases
(Beck et al. 2014). Moreover, low sample size can highly impact the performance of SDMs and data
available may not be sufficient to fully inform the models (Wisz et al. 2008; Stockwell et al. 2002). To
address these shortcomings, we designed a conservative methodology to keep only the most
trustworthy records and limit oversampling in some areas. We also kept records from both the native
and the alien range (Broennimann and Guisan 2008).

Second, the species’ performance should respond directly to the variation of the selected predictors. In
this study we chose four climate variables for their known link with plant species survival and
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development (Mod et al. 2016) and their availability in both fine spatial and temporal scales. Moreover,
Sheppard et al. (2014), showed that predictions of similar SDMs of the response of three invasive plant
species to climate change was highly correlated with field experiments. However, SDMs are correlative
and may yield incorrect estimates of habitat suitability if climatic variables are correlated to other
unknown variables in the training area (Guisan et al. 2017; Jarnevich et al. 2015). Future projections from
our fitted models of climatic suitability could be biased by potential confounding factors of climate, as
we do not take into account other factors which determine the success of alien species in a new region,
such as dispersal capabilities and biotic interactions. Our model fitting procedure implicitly assumed
that a species had the opportunity to colonise a large part of any country where it was recorded.
Regarding interactions, Australian Acacia species often have competitive advantages over native plant
species and tend to become dominant among plant communities, especially after disturbance (Morris et
al. 2011), suggesting that the spatial extent of the realised niche would not be strongly restricted by
competitive interactions compared to the potential niche. Yet, other interactions, such as mutualistic and
trophic interactions with soil fungi (Birnbaum et al. 2018) may contribute to constrain the actual range of
Acacias and act as confounding factors of climate in fitted SDMs, inducing bias in future projections.
Furthermore, factors such as topography could be taken into account to improve the models (Bradley
and Mustard 2006). Thus, our model predictions could be improved by considering non-climatic drivers
(such as soil composition) if these variables were available at a fine resolution.

Third, the species’ distribution, represented by recorded occurrences, should be stable and fill any
available niche in the study environment. Several studies have shown violations of the niche
conservatism hypothesis during invasion with niche shifts between the native niche and the introduced
niche (e.g. Parravicini et al. 2015; Broennimann et al. 2007; Guisan et al. 2014). Moreover, predictions
based on extrapolations on a new territory and with future climatic conditions may not be robust
because the data used for model parameterization cannot represent all conditions in the extrapolated
region (Elith and Leathwick 2009; Barbet-Massin et al. 2010; Sinclair et al. 2010). Thus, it must be kept in
mind that our suitability and risk maps may be underestimated and should not be taken as a prediction
of true future species richness and impacts.

Fourth, some future climatic conditions may not have an analog amongst the historical climates of the
study area (Williams & Jackson 2007). Yet, SDMs cannot predict exactly how species will respond to
conditions that were not used for calibration (Pouteau et al. 2021). This could partly explain why most
alien species (Bellard et al. 2018) including Acacias alien to South Africa, are projected to experience a
decrease in the size of their potential range according to our current knowledge. Future work should
consider the identification of novel climates so as to avoid putting too much confidence in climates with
no current analogues.

Caution is also advised when interpreting the risk maps including the sum of potential impacts of
Acacias. Firstly, there are many ways to aggregate impacts, both, within species (calculating one impact
value taking into account all impact records for the species) and across species (calculating an impact
score for a site where several alien species are present) (Boulesnane-Genguant et al. in prep). Some of
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the most prominent methods to get one impact value per species have been to sum scores (e.g.,
Nentwig et al. 2016), to calculate a mean value (e.g., Rumlerova et al. 2016), and to take a maximum
value (e.g., Blackburn et al. 2014) (see also Kumschick et al. 2024). They each come with underlying
assumptions which can affect the results. The maximum score per species, as used here, was chosen
for range shifting species in the US to anticipate if any high impacting invaders are likely to arrive under
climate change (Rockwell-Postel et al. 2020). However, the applications of scores aggregated across
species are scarce (for an example, see Nentwig et al. 2010).

Furthermore, climate change can not only affect the potential distribution of species, but also modify
their invasion behaviour and impacts (e.g., Le Maitre et al. 2020). Changes to fire regimes could have
large impacts on alien species and native ecosystems, especially in the fynbos biome of South Africa
where fires have been increasing in frequency and intensity due to alien invasions and climate change
(Le Maitre et al. 2020; Slingsby et al. 2017). Furthermore, CO2 concentration could lead to woody plant
densification, which is already shown for native woody plants in some southern African habitats
(Skowno et al. 2017). In the fynbos biome, increased CO2 could also favour the alien wattles as they are
nitrogen fixers as opposed to the native flora which are adapted to low nitrogen conditions (Richardson
et al. 2014). In other examples, the synchronisation of the flowering period of native and alien plants may
favour the latter, through increased interactions with pollinators to the detriment of the pollination of
native species. This is the case in New Zealand with Calluna vulgaris whose greater phenological
plasticity compared to the native species Dracophyllum subulatum means that it can reproduce more
easily in areas with a high floral density (Giejsztowt et al. 2020). Morphological responses to climate
change can also increase the competitiveness of alien species. For example, milder winter temperatures
in China facilitate the survival of the water hyacinth Pontederia crassipes, and also allow it to develop a
greater biomass, forming denser foliage that excludes submerged native plants the following season
(You et al. 2013). In terrestrial environments, rising temperatures can also encourage the development of
alien plants, reducing the availability of water for native plants, which are then at a disadvantage when it
comes to coping with dry spells. This is the case of Tamarix spp. introduced in the United States, which
develops greater capacity to capture and use water resources than native riparian species under the
effect of drought (Hellmann et al. 2008).

Given all these potential interactions between climate change and impacts of alien species, what we are
showing here is not an accurate representation of sites with future impacts of alien Acacia species in
South Africa. However, risk maps like these of sites where impacting species could occur under climate
change projections can be valuable in helping us prioritise sites for future protection from invasion
impacts. Despite the potential shortcomings of the models presented here, our study contributes to our
understanding of the impacts of climate change on the risk of alien Acacia invasions, including their
impacts. Furthermore, it can aid the prioritisation of clearing actions for alien Acacia species in South
Africa and feed into strategies for protected area management and expansion (e.g., Department of
Environmental Affairs 2016). Protected areas are set up to safeguard biodiversity and ecosystem
services for the future. We show that for the Western Cape province, most protected areas should
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experience less impact risk in future. However, the areas with increased risk are of lowest protection,
which makes them more vulnerable to negative changes and biodiversity loss. Elevating the protection of
these sites and controlling harmful Acacias can help us reduce the loss of high biodiversity areas, as
stipulated in the GBF Target 1. Understanding where some of the most damaging invaders might occur
under climate change is important so our management is tackling not only current, but also potential
future problems.
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Figure 1

Step by step explanation of the development of the models and maps for future climate projections. Five
climate models were selected, and three socio-economic pathway scenarios (ssp) modelled. For details
on the models and variables selected, see text.

Figure 2
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Cumulative probability of presence ranging from zero (no species projected to establish) to thirty (all
species with the highest probability to establish) of alien acacias (left) and projected impacts (right)
based on the maximum recorded impacts of the species present over three time horizons: Top row:
Current climate (1981-2010), middle row: mid-century (2041-2070), bottom row: end of century (2071-
2100). The cumulative probability of presence on the left is the sum of single species establishment
probability. Each species probability is a mean across combinations of global climate models and socio-
economic scenarios. The right hand column shows the sum of species maximum impact weighted by
their establishment probability.

Figure 3

Sum of maximum recorded impacts across acacia species based on EICAT records in Jansen et al.
(2023) occurring per Quarter Degree Square (QDS; 25 km x 25 km) grid cell. This map is based on actual
occurrence records of acacia species in South Africa taken from the database of Botella et al. (2023),
with sum of impacts overlayed. Contrary to the projected maps in Figure 2, no records were excluded
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(including urban areas). The darker the red color, the higher the impact sum of the species occurring in
these cells.

Figure 4

Projected changes in impact risk of Acacia species under future climate for protected areas of the
Western Cape province. For each protected area, we compared the mean impact risk under current
climate and end-of-century (2071-2100) climate. Negative values (in blues) indicate a reduction in
impact risk, while positive values (in red) indicate an increase in impact risk.



Page 21/21

Figure 5

Changes in impact risk of Acacia species in the Western Cape province of South Africa according to
protected areas status. Protected areas are listed in increasing order of protection status (from left to
right). For each type, impact risk of Acacia species have been summarised under current and end-of-
century (2071-2100) climate.
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