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Abstract
The gcube R package, developed during the B-Cubed hackathon (Hacking Biodiversity
Data Cubes for Policy), provides a flexible framework for generating biodiversity data cubes
using minimal input. The package assumes three consecutive steps (1) the occurrence
process, (2) the detection process, and (3) the grid designation process, accompanied by
three main functions respectively: simulate_occurrences(), sample_observations(),
and grid_designation(). It allows for customisable spatial and temporal patterns, detection
probabilities, and sampling biases. During the hackathon, collaboration was highly efficient due
to thorough preparation, task division, and the use of a scrum board. Fourteen participants
contributed 209 commits, resulting in a functional package with a pkgdown website, 67 %
code coverage, and successful CMD checks. However, certain limitations were identified, such
as the lack of spatiotemporal autocorrelation in the occurrence simulations, which affects the
model’s realism. Future development will focus on improving spatiotemporal dynamics, adding
comprehensive documentation and testing, and expanding functionality to support multi-species
simulations. The package also aims to incorporate a virtual species workflow, linking the
virtualspecies package to the gcube processes. Despite these challenges, gcube strikes a
balance between usability and complexity, offering researchers a valuable tool for simulating
biodiversity data cubes to assess research questions under different parameter settings, such as
the effect of spatial clustering on the occurrence-to-grid designation and the effect of different
patterns of missingness on data quality and robustness of derived biodiversity indicators.

Langeraert et al., Simulating biodiversity data cubes (2024). BioHackrXiv.org 1

https://b-cubed.eu/b-cubed-hackathon
https://b-cubed.eu/b-cubed-hackathon
https://github.com/wlangera/gcube-bcubed-hack
https://creativecommons.org/licenses/by/4.0/
http://biohackrxiv.org/
mailto:ward.langeraert@inbo.be
https://biohackrxiv.org/


Introduction
Simulation studies offer numerous benefits due to their ability to mimic real-world scenarios in
controlled and customisable environments, offering insights that are often difficult to obtain
through empirical methods alone (Christie et al., 2019; Zurell et al., 2010). Ecosystems and
biodiversity data are very complex and involve a multitude of interacting factors. Some of
those factors belong to the occurrence (biological) process, such as responses to environmental
gradients and environmental change, while other factors belong to the detection (sampling)
process, such as sampling effort and bias, positional uncertainty of observations and species
detectability. Simulations allow researchers to model complex ecological processes, predict
outcomes in various scenarios, and test hypotheses in a controlled, repeatable manner where
the effects of biological and sampling processes can be disentangled (Münkemüller et al., 2012;
Sokol et al., 2017; Zurell et al., 2010).
Species occurrences can be conceptualized as events in a three-dimensional space, where
the dimensions represent taxonomic classification (what), time (when), and spatial (where).
These data can be organized into “occurrence cubes” or “biodiversity data cubes”, providing
a standardized method for integrating species occurrence information from multiple sources.
Along the taxonomic axis, occurrences are classified within a specific taxon level (e.g., species
level). On the temporal axis, the data are grouped by time intervals (e.g., by year). For the
spatial axis, occurrences are mapped to a reference grid, with a random point selected within
the uncertainty radius and placed in the grid cell that contains it (Oldoni, Groom, Adriaens,
et al., 2020; Oldoni, Groom, & Desmet, 2020) (see also https://b-cubed.eu/). Biodiversity
data cubes improve the accessibility and usability of open-source biodiversity data, which often
originate from various sources like citizen science, monitoring projects, and remote sensing (e.g.,
data hosted by the Global Biodiversity Information Facility, https://www.gbif.org/). They
offer a standardised approach to integrating data from multiple sources, enabling applications
such as species distribution modeling and biodiversity index calculations, while ensuring the
data adheres to FAIR principles (Wilkinson et al., 2016). Additionally, data cubes streamline
data cleaning and computation, significantly accelerating the transformation of biodiversity
data into actionable insights.
There are R packages available for simulation of ecological communities (e.g., May et al., 2018;
Sokol et al., 2015) and species distribution (Leroy et al., 2016). However, we lack tools that
integrate the simulation of species distribution in space and time with respect to biodiversity
data cubes. In this paper, we describe the development of a practical simulation framework
for these cubes during the B-Cubed Hackathon (Hacking Biodiversity Data Cubes for Policy).
This framework is composed of three steps (Fig. 1):

1. The occurrence process: Simulating occurrences of multiple species distributed in a
landscape over a temporal scope. This depends on the rarity, which can differ between
species and over time, and their spatial clustering, which can differ between species. A
challenge for this part is to implement a consistent spatial and temporal autocorrelation
for simulated species trends.

2. The detection process: Simulation of a variety of observation processes generates actual
occurrence datasets. Each species has a different detection probability. The detection
process also depends on the sampling effort which can be different among spatial and
temporal dimensions. Spatial uncertainty can be assigned to each observation.

3. The grid designation process: Based on their spatial uncertainty, occurrences are desig-
nated to grid cells of a larger grid to form a data cube.

This simulation framework can be used to assess multiple research questions under different
parameter settings, such as the effect of spatial clustering on the occurrence-to-grid desig-
nation and the effect of different patterns of missingness on data quality and robustness of
derived indicators. Simulation studies can incorporate scenarios with missing data, allowing
researchers to assess the impact of data gaps on analyses within the occurrence cube framework.
Furthermore, the development of a visualisation tool for the simulated cubes can enhance
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the understanding of data clustering and missingness within the simulated environment. By
creating a visual representation, researchers can effectively help interpret patterns of clustered
data and identify areas where data are missing. This visualisation capability contributes to a
more comprehensive exploration of the simulated scenarios, allowing for deeper insights into
the behaviour of aggregated heterogeneous biodiversity data.
The B-Cubed Hackathon took place from 2-5 April 2024. This paper describes the methods
and results of projects 2 and 8 during this hackathon. The final commit hash of the GitHub
repo is given at the end of this paper. In this paper, we use the function and argument
names of the stable R package version developed after the hackathon (v0.4.0, Langeraert,
2024), because some names were changed shortly after the hackathon and will improve clarity
regarding argument and function usage.

Figure 1: Simulation framework for biodiversity data cubes. An example of three species, represented
by different colours, that differ in rarity, clustering, and detection probability/sampling effort. White
dots are undetected occurrences.
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Materials and Methods

Technical setup
The first author a priori decided to build the simulation framework using the R programming
language as an R package (R Core Team, 2024), where participants could collaborate efficiently
with each other via GitHub (https://github.com/). A repository for this package was prepared
and a code structure was proposed for the framework (see next subsection).
Common guidelines for software development (e.g. related to coding style, function naming,
and unit testing) were mentioned to ensure efficient collaboration as well as future maintenance
and development (Huybrechts et al., 2024).

Code architecture
General code architecture of the package was proposed following preparation of the hackathon
by the first author. The provided pseudocode and ideas for implementation are provided in
Appendix 1. It is very similar to the developed and functional code described further in the
results.
As indicated in the introduction, the simulation framework and thus the R package can be
divided into three consecutive processes related to different variables that depend on species,
observation, space and time.

1. occurrence process
2. detection process
3. grid designation process

For grid designation, R code was already available as the function grid_designation().
Thus, the focus of the hackathon was on the occurrence and detection processes.

Process Variable Dependency
occurrence rarity species, time
occurrence spatial clustering species
detection detection probability species
detection sampling effort space, time
detection spatial uncertainty observation

The three processes can be described in three main functions respectively simulate_occurre
nces(), sample_observations() and grid_designation(). Each main function consists
of multiple supporting functions, for example, per variable mentioned above or for specific
subprocesses (e.g. temporal autocorrelation).

Collaboration and division of tasks
Following the information provided in the previous subsections, four types of tasks were
distinguished (Fig. 2).

1. Low level tasks: Tasks related to supporting and helper functions of the high level
functions simulate_occurrences() and sample_observations(). They were the
first priority of the development process during the hackathon.

Task Description High level relation
spatial autocorrelation add spatial autocorrelation helper

function
occurrence process
function
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Task Description High level relation
temporal
autocorrelation

add temporal autocorrelation helper
function

occurrence process
function

detection probability implement detection probability detection process
function

sampling bias add sampling bias helper function detection process
function

coordinate uncertainty add coordinate uncertainty helper
function

detection process
function

2. High level tasks: These tasks combine the low level functions into the main, high level
functions simulate_occurrences() and sample_observations(). They were the
final priority of the development process during the hackathon.

Task Description
simulate
occurrences

combine supporting and helper functions in
simulate_occurrences() function

sample observations combine supporting and helper functions in sample_observations()
function

3. Technical tasks: These tasks cover general code development and testing. They were
required throughout the development process of the hackathon.

Task Description
unit tests create unit tests and calculate code coverage
documentation maintain function and package documentation
pkgdown website maintain pkgdown website (Wickham et al., 2024)
GitHub repository maintain GitHub repository

4. Creative tasks: Other tasks that require outside-the-box or creative thinking and which
are (mainly) independent from other tasks. Participants were encouraged to come up
with interesting applications and links to other frameworks/concepts/software/. . . These
tasks could be done throughout the development process of the hackathon.

Task Description
spatiotemporal autocorrelation add spatiotemporal autocorrelation helper function
virtualspecies link to virtualspecies package (Leroy et al., 2016)
vignettes create vignettes
. . . . . .
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Figure 2: Schematic overview of the different types of tasks. See text for explanation.

Using a Google Form, we got an overview of participants’ interest in the different tasks, and an
idea where a potential shortage of coverage might occur. Tasks were divided and followed up
via a simple scrum methodology by using sticky notes (coloured by task type) on a board. The
board was divided into four parts (from left to right): ‘Ice Box’, ‘In Progress’, ‘Review’, and
‘Complete’. The ‘Ice Box’ is where all the potential tasks and ideas were stored before they
were prioritized and selected for development. The ‘In Progress’ category contains tasks that
the team was actively working on during development. The ‘Review’ category is for tasks that
have been completed but are awaiting review, testing, or approval. The ‘Complete’ category
includes tasks that have been reviewed, approved, and finalised. The participants were free to
choose and add tasks to the scrum board, indicating the task and their name on the sticky
note.

Results

Collaboration
This was the general timing of activities during the hackathon. In total, we had about 6
half-days of coding time.

Day Part Activities
1 Morning General introduction and presentations of the hackathon.

Afternoon Create project group. Acquaintance with participants and presentation of
the objectives of the project.

2 Morning Division of tasks and start of code development.
Afternoon Continued code development.
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Day Part Activities
3 Morning Further code development.

Afternoon Continued code development.

4 Morning Code review and pull request merging.
Afternoon Final presentations of all hackathon projects.

After discussion with the participants, the R package was named gcube, which stands for
‘generate cube’ since it can be used to generate biodiversity data cubes from minimal input.
Tasks were efficiently distributed along the participants (Fig. 3). In total, we collaborated with
fourteen people pushing 209 commits to the main branch and 300 commits to all branches.
On main, 56 files were changed and there have been 2,856 additions and 373 deletions. By
the end of the hackathon, we had a functional pkgdown website (Fig. 4), all CMD checks
passed, and we had a code coverage of 67 %.

Figure 3: Scrum board progress during code development. Categories from left to right: ‘Ice Box’, ‘In
Progress’, ‘Review’, and ‘Complete’. Day 1 was mainly introduction and discussion. Day 2-3 mainly
code development. Day 4 was primarily review and pull request merging. Coding ended before the
final presentations on day 4 in the afternoon.
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Figure 4: Overview of the gcube pkgdown website.

R package development
The biodiversity data cube simulation workflow of gcube is divided into three steps or processes:

1. Occurrence process
2. Detection process
3. Grid designation process

The three processes are executed by three main functions simulate_occurrences(), sample
_observations(), and grid_designation(), respectively. The functions are designed such
that a single polygon as input is enough to go through this workflow using default arguments.
An example workflow is given in the next section. In this subsection, we give a more technical
overview of the functions that were developed. The three functions all have a seed argument
used to allow reproducible results. If NA (the default), no seed is used.
1. Occurrence process

The simulate_occurrences() function generates occurrences of a species within a given
spatial and/or temporal span.
simulate_occurrences(

species_range,
initial_average_occurrences = 50,
spatial_pattern = c("random", "clustered"),
n_time_points = 1,
temporal_function = NA,
...,
seed = NA

)
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The input (species_range) should be an sf object with POLYGON geometry indicating the
spatial extension to simulate occurrences.
The temporal component of this function is executed by the simulate_timeseries()
supporting function.
simulate_timeseries(

initial_average_occurrences = 50,
n_time_points = 1,
temporal_function = NA,
...,
seed = NA

)

The initial number of occurrences (initial_average_occurrences) and the temporal trend
function (temporal_function) generate a number of occurrences for each time point (the
total number of time points is given by n_time_points). If the temporal function is NA
(default), it samples n_time_points times from a Poisson distribution with an average
equal to initial_average_occurrences. You can also specify a function which generates
a trend in number of occurrences over time. This can be the internal function simulat
e_random_walk() or a custom function that takes initial_average_occurrences and
n_time_points as arguments. Additional arguments for the temporal function can be passed
to the ellipsis argument (...). The specified temporal function calculates a number of
occurrences for each time point according to a certain function (e.g. a random walk in case of
temporal_function = simulate_random_walk) and draws this from a Poisson distribution
using stats::rpois() (R Core Team, 2024).
The spatial component of simulate_occurrences() is executed by the create_spatial_
pattern() and sample_occurrences_from_raster() supporting functions.
create_spatial_pattern(

polygon,
resolution,
spatial_pattern = c("random", "clustered"),
seed = NA,
n_sim = 1

)

create_spatial_pattern() creates a raster for the area of a polygon (polygon) with a
resolution (resolution) according to a spatial patter spatial_pattern. "random" is the
default pattern. The user is able to provide a numeric value >= 1 (1 is “random” and 10
is “clustered”). A larger number means a broader size of the clusters. This number changes
the range parameter of the spherical variogram model. spatial_pattern = 1 means the
range has the same size of the grid cell, which is defined in resolution argument (calculated
by simulate_occurrences() as one hundredth of the extend of the polygon). We use the
function gstat::vgm() to implement the spherical variogram model (Gräler et al., 2016).
sample_occurrences_from_raster(

raster,
time_series,
seed = NA

)

The raster output of create_spatial_pattern() is then used as input for sample_occ
urrences_from_raster() (argument raster). From this raster, it samples a number of
occurrences (argument time_series) as provided by simulate_timeseries() for each time
point using terra::spatSample() (Hijmans, 2024). The final result is thus a number of
occurrences sampled from a spatial pattern for multiple time points that are passed as output
for simulate_occurrences().
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2. Detection process

We have our occurrences, but not all occurrences are generally observed. The detection of
occurrences depends on the detection probability of a species and the sampling bias (which
includes both sampling bias and effort). This process is simulated using the sample_observa
tions() function.
sample_observations(

occurrences,
detection_probability = 1,
sampling_bias = c("no_bias", "polygon", "manual"),
bias_area = NA,
bias_strength = 1,
bias_weights = NA,
seed = NA

)

Detection probability (detection_probability) is passed as a numeric value between 0 and
1. For sampling bias, there are three options specified in sampling_bias (cf. Leroy et al.
(2016)).

1. With "no_bias", only the detection probability value decides whether an occurrence is
observed or not. If detection_probability = 1 and sampling_bias = "no_bias",
all occurrences are detected.

2. With "polygon", bias weights depend on their location inside or outside a given
polygon with a certain bias strength. This is achieved by the supporting function
apply_polygon_sampling_bias().

apply_polygon_sampling_bias(
occurrences_sf,
bias_area,
bias_strength = 1

)

The function adds a sampling bias weight column to an sf object with POINT geometry
containing the occurrences (occurrences_sf). This column contains the sample probability
based on bias strength bias_strength within a given polygon bias_area. The bias strength
is the strength of the bias to be applied in the biased area (as a multiplier). Above 1, the area
will be oversampled. Below 1, the area will be undersampled. For example, a value of 50 will
result in 50 times more samples within the bias_area than outside. Conversely, a value of
0.5 will result in half less samples.

3. With "manual", bias weights depend on their location inside grid cells of a given
grid where each cell has its own value. This is achieved by the supporting function
apply_manual_sampling_bias().

apply_manual_sampling_bias(
occurrences_sf,
bias_weight

)

The function adds a sampling bias weight column to an sf object with POINT geometry
containing the occurrences (occurrences_sf). This column contains the sample probability
based on bias weights within each cell of a given grid layer (bias_weight).
sample_observations() combines detection probability and sampling bias weight to a single
value p as a product and uses this to draw for each occurrence from stats::rbinom(1, 1, p)
(R Core Team, 2024) to decide whether an occurrence is observed or not.
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To mimic real-life data collection, we can select observed occurrences and add coordinate
uncertainty with the add_coordinate_uncertainty() function. This is optional.
add_coordinate_uncertainty(

observations,
coords_uncertainty_meters = 25

)

This is done by adding an additional column to the observed occurrences (observations).
This column contains numeric values (passed to coords_uncertainty_meters as one value or
a vector of values) that indicate the coordinate uncertainty in metres around each observation.
3. Grid designation process

Now that we have our observations, we designate them to a grid while taking into account the
coordinate uncertainty in metres around the observation, if present. This function was already
developed by the first author before the hackathon started, but is given here for the sake of
completeness.
grid_designation(

observations,
grid,
id_col = "row_names",
seed = NA,
aggregate = TRUE,
randomisation = c("uniform", "normal"),
p_norm = ifelse(tolower(randomisation[1]) == "uniform", NA, 0.95)

)

This function designates observations (observations) to cells of a given grid (grid) to create
a data cube. id_col specifies the column name of the column with unique ids for each grid
cell. If id_col = "row_names" (the default), a new column cell_code is created where
the row names represent the unique ids. If aggregate = TRUE (default), the data cube is
returned in aggregated form (grid with number of observations per grid cell). Otherwise,
return the sampled points in their uncertainty circle. The randomisation method, specified
with randomisation, is used for sampling within uncertainty circle around each observation.
By default "uniform" which means each point uncertainty circle has an equal probability
to be selected. If no coordinate uncertainty is present, the function takes the point itself
for designation. The other option is "normal" where a point is sampled from a bivariate
Normal distribution with means equal to the observation point and the variance equal to
(-coordinateUncertaintyInMetersˆ2) / (2 * log(1 - p_norm)) such that p_norm % of
all possible samples from this Normal distribution fall within the uncertainty circle. p_norm
is only used if randomisation = "normal" and has the default value of 0.95. Uniform
is the standard method to create biodiversity data cubes. The normal randomisation is an
experimental feature.
The final output is (aggregate = TRUE) an sf object with POLYGON geometry containing the
grid cells, an n column with the number of observations per grid cell, and a min_coord_uncert
ainty column with the minimum coordinate uncertainty per grid cell. If aggregate = FALSE,
an sf object with POINT geometry containing the sampled observations within the uncertainty
circles, and a column coordinateUncertaintyInMeters with the coordinate uncertainty for
each observation.
The following imports and suggests were used. Packages listed under ‘imports’ are essential for
the package to function and are automatically loaded when gcube is loaded. Packages listed
under ‘suggests’ are not essential for the basic functionality of the package, but are useful for
certain optional features, examples, or tests. These packages are not automatically loaded
when gcube is loaded.
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Type Package Source
imports cli (Csárdi, 2024)
imports dplyr (Wickham et al., 2023)
imports gstat (Gräler et al., 2016)
imports magrittr (Bache & Wickham, 2022)
imports methods (R Core Team, 2024)
imports mnormt (Azzalini & Genz, 2022)
imports rlang (Henry & Wickham, 2024)
imports sf (Pebesma, 2018; Pebesma & Bivand, 2023)
imports stats (R Core Team, 2024)
imports terra (Hijmans, 2024)
imports vegan (Oksanen et al., 2024)
imports withr (Hester et al., 2024)
suggests ggplot2 (Wickham, 2016)
suggests testthat (Wickham, 2011)

Incorporation of virtual species to the simulation workflow
Project 8 originally aimed to address the challenges of incomplete and unreliable biodiversity
data that hinder accurate species distribution models (SDMs). By creating virtual species with
known ecological characteristics, researchers can simulate and analyse the effects of spatial,
temporal, and taxonomic uncertainties. This “virtual ecologist” approach helps quantify
sources of error and refine modelling techniques (Zurell et al., 2010). The goal is to improve
conservation planning, especially for rare or endangered species, by providing more reliable
predictions of species distributions under various environmental conditions, including climate
change.
At an early stage of the hackathon, it was decided that the concepts and ideas developed
by this group would be integrated into the cube simulation package of group 2. This
decision was influenced by the existing proposal to incorporate a virtual species workflow using
the virtualspecies package, as mentioned above. The focus was primarily on discussions,
conceptualization, and experimentation with the code of both the virtualspecies package and
the gcube package as it was being developed at the time.
The idea of working with a virtual species approach in gcube is that simulations can start
from two points.

1. Original gcube workflow: Start from empty polygon and mathematical concepts.
2. virtualspecies workflow: Start from environmental data layers.

We identified the needs for future development of the virtual species approach. Link functions
are required that accept output from the virtualspecies package and provide input for the
three main simulation functions of gcube.

virtualspecies
function(s)

virtualspecies
output

Link function
gcube gcube function(s)

generateSpFromFun()
or
generateSpFromPCA()

environmental
suitability map

rescale_suitabi
lity_raster()

simulate_occur
rences()

convertToPA() presence-absence
map

occurrences_fro
m_raster()

sample_observa
tions()
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virtualspecies
function(s)

virtualspecies
output

Link function
gcube gcube function(s)

sampleOccurrences() sampled presence
points

virtual_occurre
nces_to_sf()

add_coordinate
_uncertainty()
and/or grid_des
ignation()

This was mainly conceptual and was not implemented in the package yet. The link functions
are suggestions, which can differ from actual future implementation.

gcube workflow example
This is a basic example from the README which shows the workflow for simulating a
biodiversity data cube using the gcube package. It is an example for one time point for a
single species (the default). This is not the exact README example from the hackathon, but
a cleaned version from the week after.
The functions are designed such that a single polygon as input is enough to go through this
workflow using default arguments. The user can change these arguments to allow for more
flexibility.
# Load packages
library(gcube)

library(sf) # working with spatial objects
library(dplyr) # data wrangling
library(ggplot2) # visualisation with ggplot

We create an arbitrary polygon as input.
# Create a polygon to simulate occurrences
polygon <- st_polygon(list(cbind(c(5, 10, 8, 2, 3, 5), c(2, 1, 7,9, 5, 2))))

# Visualise
ggplot() +

geom_sf(data = polygon) +
theme_minimal()
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1. Occurrence process

We generate occurrence points within the polygon using the simulate_occurrences()
function. These are the “real” occurrences of the species, whether we have observed them
or not. In the simulate_occurrences() function, the user can specify different levels of
spatial clustering, and can define the trend change of the species over time.
# Simulate occurrences within polygon
occurrences_df <- simulate_occurrences(

species_range = polygon,
seed = 123)

#> [using unconditional Gaussian simulation]

# Visualise
ggplot() +

geom_sf(data = polygon) +
geom_sf(data = occurrences_df) +
theme_minimal()
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2. Detection process

In this step we define the sampling process, based on the detection probability of the species
and the sampling bias. This is done using the sample_observations() function. The default
sampling bias is "no_bias", but bias can also be inserted using a polygon or a grid.
# Detect occurrences
detections_df_raw <- sample_observations(

occurrences = occurrences_df,
detection_probability = 0.5,
seed = 123)

# Visualise
ggplot() +

geom_sf(data = polygon) +
geom_sf(data = detections_df_raw,

aes(colour = sampling_status)) +
theme_minimal()

We select the detected occurrences and add an uncertainty to these observations, by using the
add_coordinate_uncertainty() function.
# Select detected occurrences only
detections_df <- detections_df_raw %>%

dplyr::filter(sampling_status == "detected")

# Add coordinate uncertainty
set.seed(123)
coord_uncertainty_vec <- rgamma(nrow(detections_df), shape = 2, rate = 6)
observations_df <- add_coordinate_uncertainty(

observations = detections_df,
coords_uncertainty_meters = coord_uncertainty_vec)

# Created and sf object with uncertainty circles to visualise
buffered_observations <- st_buffer(

observations_df,
observations_df$coordinateUncertaintyInMeters)
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# Visualise
ggplot() +

geom_sf(data = polygon) +
geom_sf(data = buffered_observations,

fill = alpha("firebrick", 0.3)) +
geom_sf(data = observations_df, colour = "firebrick") +
theme_minimal()

3. Grid designation process

Finally, observations are designated to a grid to create an occurrence cube. We create a grid
over the spatial extend using sf::st_make_grid().
# Define a grid over spatial extend
grid_df <- st_make_grid(

buffered_observations,
square = TRUE,
cellsize = c(1.2, 1.2)

) %>%
st_sf() %>%
mutate(intersect = as.vector(st_intersects(geometry, polygon,

sparse = FALSE))) %>%
dplyr::filter(intersect == TRUE) %>%
dplyr::select(-"intersect")

To create an occurrence cube, grid_designation() will randomly take a point within the
uncertainty circle around the observations. These points can be extracted by setting the
argument aggregate = FALSE.
# Create occurrence cube
occurrence_cube_df <- grid_designation(

observations = observations_df,
grid = grid_df,
seed = 123)

# Get sampled points within uncertainty circle
sampled_points <- grid_designation(

observations = observations_df,
grid = grid_df,
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aggregate = FALSE,
seed = 123)

# Visualise grid designation
ggplot() +

geom_sf(data = occurrence_cube_df, linewidth = 1) +
geom_sf_text(data = occurrence_cube_df, aes(label = n)) +
geom_sf(data = buffered_observations,

fill = alpha("firebrick", 0.3)) +
geom_sf(data = sampled_points, colour = "blue") +
geom_sf(data = observations_df, colour = "firebrick") +
labs(x = "", y = "", fill = "n") +
theme_minimal()

The output gives the number of observations per grid cell and minimal coordinate uncertainty
per grid cell.
# Visualise minimal coordinate uncertainty
ggplot() +

geom_sf(data = occurrence_cube_df, aes(fill = min_coord_uncertainty),
alpha = 0.5, linewidth = 1) +

geom_sf_text(data = occurrence_cube_df, aes(label = n)) +
scale_fill_continuous(type = "viridis") +
labs(x = "", y = "") +
theme_minimal()
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Discussion and future work

Collaboration
The methods outlined in this paper proved to be very efficient for hackathon code collaboration.
A thorough preparation turned out to be crucial for working together on a single project in
a large group. We recommend to set up code repository structure and provide pseudocode
(architecture) beforehand if possible. In this way, all participants can focus on the content of
the project from the beginning. Defining modular tasks in advance and preparing an interactive
follow-up schedule (the scrum board) also helped to ensure participant engagement and a
quick and smooth start of code development.

Current shortcomings
It is impossible to list all potential shortcomings for a project developed within such a short time
frame, but several conceptual issues emerged during discussions. A simulation framework is
only valuable if it can realistically model biological and sampling processes. This is particularly
true for the occurrence process, handled by the simulate_occurrences() function. For
example, this function generates a new sample for each time point from the spatial pattern
that remains unchanged over time, lacking spatiotemporal autocorrelation.
gcube is designed to be an accessible and easy-to-use package for exploring cube-related
research questions within a controlled and customisable environment. However, there is
an inherent trade-off between increasing the complexity of the package and maintaining its
usability. Balancing these factors is crucial to ensure that the package remains practical for
researchers while still offering enough flexibility for robust and realistic simulations. Future
improvements should aim to introduce more sophisticated spatiotemporal dynamics without
compromising ease of use.
We list some potentially useful references here without going too much into detail:

• Instead of sampling from a Poisson distribution, we can model the number of occurrences
in space and time. For example, using point process models (Bachl et al., 2019) or
spatiotemporal GLMMs (Generalized Linear Mixed Effects Models) (Anderson et al.,
2024).

• Implement individual based models (on (meta)population level?), which allows for a
high degree of complexity of individuals and of interactions among individuals (see e.g.,
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Grimm & Railsback, 2013).
• Simulate random spatial point patterns (Baddeley et al., 2015), e.g. using a homogeneous

or inhomogeneous Poisson process. This might be an alternative to the current method
rather than a solution for spatiotemporal autocorrelation.

Future development
After working with many people on a single project, an obvious first step is the need for
code cleanup and unifying coding style and documentation. Due to time constraints, some
documentation needs to be added or corrected, and unit tests need to be added where necessary
for higher code coverage. It would also be good to add vignettes that demonstrate the usage
of the different functions’ arguments throughout the cube simulation workflow.
Several (smaller) issues were posted on GitHub during the hackathon. These (and newly
arising) issues will be monitored and fixed. Also, for future development, we will evidently aim
to address the shortcomings listed in the subsection above. Other, major enhancements would
be to (1) provide an efficient way, i.e. a set of functions, for creating cubes for multiple species
at once, and (2) implement the virtual species approach as outlined earlier.
Finally, an interesting package that was not noticed during the preparation or the hackathon
itself is the mobsim package (May et al., 2018). This package simulates the abundance and
distribution of species in a spatial landscape, allowing users to set properties such as total
individuals, species-abundance distribution, and spatial aggregation. It also provides functions
to calculate biodiversity metrics, such as rarefaction curves and species–area relationships, and
to simulate different sampling designs. It might be interesting to compare with and to look
into the methods used by this package.

Links to software
The gcube code repository can be found here: https://github.com/b-cubed-eu/gcube. The
pkgdown website here: https://b-cubed-eu.github.io/gcube. The final commit hash of the
GitHub repo at the end of the hackathon:
https://github.com/b-cubed-eu/gcube/commit/6cceb2b229ac25d1df47a9c3a2e20b464f827e18
The current package version, at the time of publishing this paper, is 0.4.0 (Langeraert, 2024).
It contains several vignettes on the pkgdown website that explain the simulation workflow in
detail. Also, functions are added that provide calculation of data cubes for multiple species at
once, unit tests are added, and documentation is completed.
The B-Cubed hackathon repository can be found here: https://github.com/b-cubed-eu/
hackathon-projects-2024. It contains R Markdown scripts in preparation of the event.
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Appendices

Appendix 1: Pseudocode provided in preparation of the hackathon
Some pseudocode and ideas for implementation were provided by the first author for simulat
e_occurrences() and sample_observations() on the first day:
1. Occurrence process

simulate_occurrences(
polygon,
initial_average_abundance = 50,
spatial_autocorr = c("random", "clustered", "regular"),
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n_time_points = 10,
temporal_autocorr = ifelse(time_points == 1, NA, "random_walk"),
spatiotemporal_autocorr = NA,
seed = NA

)

• polygon:
An sf object with POLYGON geometry indicating the spatial extend to simulate occurrences.

• initial_average_abundance:
A positive integer value indicating the average number of occurrences to be simulated within
the extend of polygon at time point 1. This value is used as mean of a Poisson distribution
(λ parameter).

• spatial_autocorr:
"random", "clustered", "regular" or a numeric value between -1 and 1 representing
Moran’s I, indicating spatial autocorrelation. "random" corresponds to 0, "clustered" to
0.9 and "regular" to -0.9.

• n_time_points:
A positive integer value indicating the number of time points to simulate.

• temporal_autocorr:
NA, "random_walk" or a function which generates a trend in abundance over time, indicating
temporal autocorrelation. Only used if time_points > 1. When there are multiple time
points and "random_walk" is selected, an internal function can be used to create a random
walk over time. The user is also free to specify its own function that depends on initial_av
erage_abundance and n_time_points, e.g. a linearly decreasing trend over time.

• spatiotemporal_autocorr:
A numeric value between indicating the strength of spatiotemporal autocorrelation.

• seed:
A positive numeric value. The seed for random number generation to make results reproducible.
If NA (the default), no seed is used.
2. Detection process

sample_observations(
occurrences,
detection_probability = 1,
sampling_bias = c("no_bias", "polygon", "manual"),
bias_area = NA,
bias_strength = NA,
bias_weights = NA,
coordinate_uncertainty_meters = 25,
seed = NA

)

• occurrences:
An sf object with POINT geometry.

• detection_probability:
A numeric value between 0 and 1, corresponding to the probability of detection of the species.

• sampling_bias:
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"no_bias", "polygon" or "manual". The method used to generate a sampling bias (cf. the
virtualspecies package by Leroy et al. (2016)). "polygon": bias the sampling in a polygon.
Provide your polygon to bias_area. Provide bias strength to bias_strength. "manual":
bias the sampling manually via a raster. Provide your raster layer in which each cell contains
the probability to be sampled to bias_weights.

• bias_area:
NA or an sf object with POLYGON geometry. Only used if sampling_bias = "polygon".
The area in which the sampling will be biased.

• bias_strength:
NA or a positive numeric value. Only used if sampling_bias = "polygon". The strength of
the bias to be applied in the biased area (as a multiplier). Above 1, area will be oversampled.
Below 1, area will be undersampled. For example, a value of 50 results in 50 times more
samples within the bias_area than outside of it. Conversely, a value of 0.5 results in half less
samples within the bias_area than outside of it.

• bias_weights:
NA or a raster layer (sf object with POLYGON geometry, or SpatRaster object). Only used if
sampling_bias = "manual". The raster of bias weights to be applied to the sampling of
occurrences. Higher weights mean a higher probability of sampling. Weights can be numeric
values between 0 and 1 or positive integers that will be rescaled to values between 0 and 1.

• coordinate_uncertainty_meters:
A positive numeric value or vector with length nrow(occurrences) describing the uncertainty
in meters around each observation.

• seed:
A positive numeric value. The seed for random number generation to make results reproducible.
If NA (the default), no seed is used.
Finally, we also have the function add_coordinate_uncertainty().
add_coordinate_uncertainty(

occurrences,
coordinate_uncertainty_meters = 25

)

This function is a supporting function for sample_observations() to add a coordinateUn
certaintyInMeters column that should also be exported in case users simulate observations
based on virtual species distributions. This can for example be accomplished using the
virtualspecies package (Leroy et al., 2016):

1. Species-environment relationship
• generateSpFromFun()
• generateSpFromPCA()

2. Conversion to presence-absence
• convertToPA()
• introduce distribution bias: limitDispersal()

3. Sample occurrences
• sampleOccurrences()

4. Convert to sf object with POINT geometry
• sf::st_as_sf()
• create helper function virtualspecies_to_sf()?
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