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Abstract:
During the 2024 B-Cubed Hackathon, we extended the R package “rasterdiv” by incor-
porating Time-Weighted Dynamic Time Warping (TWDTW) to the package’s pre-existing
paRao() function for the calculation of parametric Rao’s Quadratic Diversity (Rao’s Q) index.
This expands the user’s ability to biodiversity trends when using time series of Earth Observa-
tions. Biodiversity indices like Shannon’s H do not consider spatio-temporal dynamics, and
others (e.g. Rao’s Q) only incorporate geographic distance between observations, often leaving
phenological variation overlooked.
Through integrating TWDTW into the paRao() function, users can assess different facets of an
ecosystem’s biodiversity by incorporating phenological differences among its plant communities.
This is also valuable to distinguish between natural habitats that follow a seasonal phenological
trend and artificial land cover types, which may lack phenological changes. Previous studies
have also found that the time weighting ability of TWDTW enables the discernment of different
floral community types which could otherwise be misclassified as the same with traditional
Dynamic Time Warping (DTW).
To evaluate the efficacy of TWDTW within the paRao() function, we compared the ability
of TWDTW Rao’s Q index against other biodiversity indices at classifying the different plant
communities in a disturbed grassland in Calabria, Italy. Our study used a Plant Phenological
Index (PPI) time series from the Sentinel-2 satellite network. The results indicated that
accounting for phenological cycles can filter out artefacts and better distinguish habitats with
differing plant species diversity. This improves the ability to assess ecosystem changes through
space and time, providing a more comprehensive understanding of biodiversity dynamics, and
the ability to gauge the resilience of different vegetation patches.
We conclude that the inclusion of plant phenology in biodiversity assessment is necessary, and
that our modifications to paRao() will be valuable to facilitate the accurate detection and
description of ecosystem trends in response to our changing environment.
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Introduction:
The B-Cubed Hackathon brought together computer scientists and ecologists from a variety of
institutions to rapidly create novel informatics solutions to the biodiversity challenges facing
the planet. We identified that the addition of time-weighting to the R package “rasterdiv”
would be a worthwhile contribution to the environmental informatics community. rasterdiv
was created to calculate biodiversity indices from numerical matrices in the R programming
environment.
Biodiversity indices included in rasterdiv currently focus on the spatial component. Here
we outline how our extension to the pre-existing implementation of Rao’s Q diversity indices
(Rocchini et al., 2017) can explicitly account for the temporal dimension of data, alongside
the relevant biological context to our extension.

The Importance of Biodiversity Indices:
Ecosystems with heterogeneous biota have been shown both experimentally and theoretically
to provide greater utility to all the agents which comprise that ecosystem (Zhang et al., 2022).
This is through the provision of more resources and a greater variety of niches available for
species. This subsequently increases the value of ecosystem services provided to the people in
communities surrounding an ecosystem. Heterogeneous ecosystems are typically also more
resilient to disturbances they experience, likely because they have functional redundancy (Mace
et al., 2012). Due to the centrality of biodiversity to healthy ecosystem functioning, quantitative
measures of biodiversity are required to understand how ecosystems are responding to ongoing
environmental changes, such as shifting land use patterns and climate change.
Novel satellite remote sensing tools generate large amounts of data about the Earth’s surface
at increasing rate, due to their almost constant temporal coverage and increasing spatial
resolution (Frazier & Hemingway, 2021). The “big data” generated by these systems need to
be interpreted effectively to accurately detect and describe ecosystem trends, such as a change
in ecosystem diversity. Consequently, information theory has been used to build the analytical
tools which are now regularly used to assess remote sensing datasets. For example, Shannon’s
H index, and other related indices only based on mathematical transformation of frequency
data, have been widely used as a proxy for biodiversity. But these can be inadequate when
applied to time series data generated by remote sensing platforms. In fact, these indices do not
consider the distance between each sampled point (whether they are species incidences, pixels,
or any other quantitative abstractions of an observation). This approach therefore treats all
objects within a dataset as equidistant from one another, so measures of Shannon’s H value
are prone to saturation, especially when only marginal differences are observed between the
objects in a remote sensing dataset.
Rao’s Quadratic Diversity index (Rao’s Q) adds “space” (but not necessarily geographical
space) as a trait to its abstraction of biodiversity by accounting for the distance between
traits of the observations within a study site. As a trait informed alternative to Shannon’s
H, Rao’s Q has been demonstrated experimentally to offer greater efficacy when representing
biodiversity in aerial remote sensing datasets (Rocchini et al., 2021), for which pixels are the
discrete observation unit. However, Rao’s Q remains limited by its inability to assess trait
change over time. Current implementations of the index (for example in the rasterdiv R
package (Rocchini et al., 2021)) only assess one snapshot of the data at a time. We set out to
overcome this limitation by incorporating Time-Weighted Dynamic Time Warping (TWDTW)
to include time as a component of the distance variable within Rao’s Q.
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The Purpose of (Time-Weighted) Dynamic Time Warping & its Eco-
logical Utility:
Dynamic Time Warping (DTW) is a mathematical approach used to compare data series when
the timing of observations differs. It has been used in a variety of disciplines. DTW works by
finding the smallest distance between two time series.
However, by minimising the differences in timing, biologically significant differences can also
be obscured, such as when comparing plant phenology. For instance, many tree species
require a minimum number of Growing Degree Hours (GDH) to commence their springtime
budburst (Fu et al., 2019). Many other ecosystem processes, such as seasonal migrations
and pollination, need to coincide with phenological events, so phenology timing represents an
important differentiating factor for time series representing ecosystems with plants (Fitchett et
al., 2015).
The TWDTW approach rectifies this by imposing a “cost” when aligning observations (which in
our study are pixels) with greater temporal separation. Therefore, the TWDTW function is less
likely to match a time series to others which exhibit substantially different phenologies. This
has been successfully demonstrated by Maus et al (V. Maus et al., 2016) to classify changing
land use patterns in the Brazilian Amazon, and was a more effective tool than standard DTW
when applied to heterogeneous biological environments like these.
In addition to the standard cost matrix of the DTW function, they also propose a method to
implement a cost due to temporal separation of temporal trends (Equation 1). In Equation
1, α is the steepness of the logistic function which is used to impose a distance penalty on
temporal separation, and β is the midpoint of the curve, the threshold below which separation
in time does not substantially impact the other components of the equation. Lastly, g(ti, tj)
represents the time elapsed between the dates evaluated in the match (ti and tj times of the
ith and jth observations).

ωi,j = 1
1 + e−α(g(ti,tj)−β) (1)

In this manuscript, we used Copernicus Sentinel-2 mission’s optical data of a small, grazed
grassland site in Calabria, Italy to demonstrate and evaluate our R-based rasterdiv imple-
mentation of phenology into Rao’s Q index. We also evaluated its efficacy in comparison to
the Shannon’s H and unmodified Rao’s Q indices.

Case Study & Results:

Implementation within rasterdiv:
We implemented this method within the existing paRao() function of the rasterdiv R
package (Marcantonio et al., 2024). We used the twtwd function from the twdtw R package
(Victor Maus, 2023) which is a wrapper for C++ implementations of TWDTW functions. In
particular, the twtwd method was implemented through the internal hidden function .mtwdtw:
.mtwdtw <- function(x, time_vector = 0, stepness = -0.5, midpoint = 35,
cycle_length = "year", time_scale = "day") {

twdtw::twdtw(
x = data.frame(time = time_vector, v = x[[1]]),
y = data.frame(time = time_vector, v = x[[2]]),
time_weight = c(stepness = stepness, midpoint = midpoint),
cycle_length = cycle_length,
time_scale = time_scale)
}
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stored in the rasterdiv file mdist.R. The paRao() function uses the "distm_m" argument
to internally call this function, applying it to pairwise pixel time series (Z). Within each moving
window, Rao’s Q index is calculated using the computed distances and the specified alpha
value. By leveraging the TWDTW distance over a time-series of matrices or images, Rao’s Q
index can be calculated using the following R function:
paRao(x = time.series,

time_vector = time,
window = 3,
alpha = 2,
na.tolerance = 0,
simplify = 3,
method = "multidimension",
dist_m = "twdtw",
midpoint = 35,
stepness = -0.5
)

The arguments and our input parameters of which are:
time.series is an (X, Y, Z) raster stack (or “cube”) of spectral data, where the X and
Y axes represent discrete pixel values, and each layer of the Z axis is a a different temporal
snapshot of the raster layer. In our study, this is the Sentinel derived time series (with daily Z
temporal resolution) of our study site.
time_vector A vector of dates corresponding to every Z layer in the raster time series, which
must be the same as the Z axis from the x variable. All pixels in the input time series must
share the same temporal spacing as the temporal pattern to which it is being compared (i.e. if
the time series has observations on days c(1, 3, 7, ...), then the pattern it is being
compared to must also have observations on days c(1, 3, 7, ...). If any x, y pixel i along
the Z temporal vector has any invalid numeric data (e.g., NA, NULL, Inf, etc.), its Rao’s Q
index value will be NA, since DTW does not allow for no data values.
steepness A continuous numeric value corresponding to the α variable from the time-weighting
function in Maus et al (V. Maus et al., 2016). Different values of α can increase or decrease
penalisation for deviations from the pattern time.
midpoint A numeric value corresponding to the β variable from the time-weighting function
in Maus et al (V. Maus et al., 2016). The input data must be of the unit specified by the
time_scale argument (e.g. in our example, it is expressed in days).
cycle_length This argument indicates the length of a single cycle. This argument can accept
either a string or numeric value. Valid string input values are “year”, “month”, “day”, “hour”,
“minute”, and “second”. String inputs are also passed to the time_scale argument. Numeric
input values must be the same unit specified by the time_scale argument.
time_scale This argument sets the units of the TWDTW function’s cycle length. Valid
string input values are “year”, “month”, “day”, “hour”, “minute”, and “second”. If the input
given to cycle_length is a string value, then this argument will change the units given in
the output. Alternatively, if a numeric value is given to cycle_length, then this argument
will compute the elapsed time in seconds.
Other arguments remain unchanged from (Victor Maus, 2023).

Study Site Description & Plant Biodiversity Data:
The study site was a small (6 hectare) area within the protected area of “Macchia Sacra”
(Site of Community Importance (SCI): SICIT9310073). It was selected as it was suitable
for thorough imaging by drone, which formed the basis of our ground-truthed biodiversity
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observations. After drone image acquisition, we defined eight types of plant communities
within the study site, with the expertise in classification imparted by an expert botanist (Figure
1). The study site is characterized by the presence of a road on the north-east part of the
site. From the level of the road the elevation declines to a lower part which features a sharp
canyon running south to west, the result of a previous small stream which had dried up by the
time of our drone survey. This part of the study site is characterized by hydrophilic vegetation.
Between these two extremes is a small hill which culminates in a plateau. The plateau is the
resting area of a herd of cows which graze in the area. This area is much dryer and subject
to strong pasture pressure and mechanical disruption, but is more nutrient which, due to the
presence of cow manure.

Figure 1: A true colour RGB satellite image (Map data: Google, Maxar Technologies 2023) giving an
overview of the study site and its surroundings within Calabria. The eight different plant community
types are overlaid as differently coloured masks in transparency upon the image. The subset of the
study site which was extracted from Sentinel-2 data is indicated within the red rectangle.

Efficacy Evaluation of our Results:
We used a time series of 144 Plant Phenological Index (PPI) images derived from Sentinel-2
imagery and available through the Copernicus Service High Resolution Vegetation Phenology
and Productivity (HRVPP) (data acquired via: https://scihub.copernicus.eu/) encompassing
all data which were available in 2023 (Figure 2). The dimensions of each image were 20 pixels
vertically by 27 pixels horizontally, and each pixel was 10m2. The PPI index was chosen as it
is minimally influenced by soil signal and the presence of shadows (Karkauskaite et al., 2017).
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Figure 2: A time series illustrating changes in the value of the Plant Phenological Index (PPI) for
every pixel within the Macchia Sacra Special Protection Area study site in Calabria.

Using these data, we applied three analytical approaches to measure biodiversity: i) The
Shannon’s Biodiversity index applied to the mean yearly PPI trajectory, ii) the classical Rao’s Q
index, applied to the same dataset and with three digits numeric resolution, and iii) the Rao’s
Q index with our implementation of the TWDTW function across the full time series of 144
images. A gross visual inspection of Figure 3 illustrates the unsuitability of Shannon’s H index,
as when using a 3 pixel wide moving window, all pixels inside each window exhibited different
values and the index was always equal to its maximum (i.e., ln(S)). It was therefore impossible
to classify the ecosystem into different groups. The standard Rao’s Q index identified the
main biodiversity hotspot as where the road intersects with the study site, and a secondary
hotspot as the plateau atop the hill. Finally, our new implementation of Rao’s Q index with
the DTW distance metrics resulted in two meaningful differences from the standard Rao’s Q
index: the road is no longer a “diversity” hotspot, and the main biodiversity hotspot moved to
the borders between two of the communities identified by our expert.
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Figure 3: A four panel plot comparing the efficacy of different diversity indices at measuring
biodiversity within our grassland ecosystem in Calabria. The white contour lines represent different
plant communities classified by an expert botanist from the drone high-resolution image. The scale
bar to the right of each plot indicates the assessed biodiversity value in the index being tested
(e.g. Shannon’s H index or Rao’s Quadratic Diversity index).

Discussion:
In this Hackathon, we developed a streamlined method for implementing the TWDTW algorithm
to calculate Rao’s Quadratic Diversity index within the rasterdiv R package. This addition
introduces a solid method to account for the temporal dimension to the traditional spatial
analysis of landscape diversity. Recognising the dynamic nature of plant communities and
ecosystems over time, our method integrates phenological variation into diversity assessments
derived from satellite imagery. Notably, our case study found that when this technique
was applied to multiband remotely sensed data from disturbed grasslands, accounting for
phenological cycles can improve diversity indices by filtering out artefacts. For instance, it can
help to distinguish between semi-natural habitats and artificial land cover types, like roads,
which lack temporal phenological shifts. These artificial features tend to form clusters of
minimal DTW distances when considering DTW as an inter-voxel distance, leading to lower
values of Rao’s Q which more accurately reflect their level of biodiversity.
In healthy, biodiverse ecosystems, a variety of flora are also likely to be present to fully utilise
the various niches present in the landscape. As Figure 2 from our case study demonstrated,
phenology trends can differ substantially within an ecosystem to reflect its biodiversity. PPI
rose sharply across the whole site before reaching a peak ranging from approximately 1 to 3 in
June, after which point, the site wide PPI drops sharply, mostly remaining between 0.2 and 1
for the rest of the year. As this sharp rise indicates, any analysis based on a single temporal
snapshot is likely to be unrepresentative of how the ecosystem in question functions throughout
the year. This primary spike in PPI also presents the widest observed range in PPI values, which
enables biodiversity indices to better classify the different types of floral communities present.
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Furthermore, Figure 2 highlights two interesting secondary PPI peaks: one in spring prior to
the primary spike in PPI, and the other beginning in October and continuing throughout the
winter. Though neither peak is as consistent side wide nor presents the same magnitude of
increase in PPI, they are nevertheless ecologically significant. These secondary peaks likely
represent floral communities which are exploiting different temporal niches, and like an oasis in
the desert, likely also create unique niches to support a more biodiverse ecosystem. Again, an
analytical approach which does not consider phenology would misrepresent the functioning of
the ecosystem. Additionally, using a traditional DTW approach to consider phenology would
erase ecological detail, as the smaller secondary peaks would have been warped to match the
rest of the site. Thus, our approach using TWDTW can provide a valuable new level of insight
into ecosystem functioning and biodiversity.
Remote sensing via Earth observation remains a rapidly developing area of scientific research
with wide applicability to conservation practice (Pettorelli et al., 2014). As the technologies
continue to mature, the possibilities remote sensing approaches like ours offer continues to grow.
For instance, Schulte to Bühne et al (Schulte to Bühne et al., 2022) recently demonstrated
the power of Earth observation satellites to assess rewilding efforts at the landscape scale.
Rewilding programmes are notoriously challenging technically, and are often expensive, too.
Thus, the ability to assess the progress of rewilding inexpensively at the landscape scale via
satellite is eminently valuable. However, as Maus et al (V. Maus et al., 2016) observed,
markedly different land use types, such as soy bean plantations and primary rainforest, can be
erroneously classified as the same via an NDVI based classification protocol which does not
consider phenology. Multiple studies (Lopes et al., 2020; V. Maus et al., 2016) also found
that accounting for the effects of phenology significantly increased the accuracy of land use
classifications. As rewilding and reforestation programmes continue, our implementation of
TWDTW reduces the barrier for conservationists trying to assess the temporal dimension
of diversity in addition to the spatial dimension. Our case study further demonstrated that
incorporation of phenological data enhances the inferential power of analyses, as this dimension
more accurately identified biodiversity hotspots than Rao’s Q index alone (Figure 3). Since
increasing biodiversity is typically a core goal of rewilding programmes, of which land cover
diversity is a core component (Skidmore et al., 2015), more accurate classification of landscape
diversity can highlight where efforts are succeeding or where further efforts are needed.

Conclusion
By incorporating temporal dynamics into the paRao() function of the rasterdiv R package,
we broaden the scope for analysing remotely sensed time series. This advancement enriches
the suite of diversity indices obtainable from remote sensing data, enhancing our understanding
of landscape heterogeneity, and in so doing, enhancing our ability to conserve it.

GitHub & Data Repositories:
This manuscript, previous revisions, open source data, and scripts can all be found on
the open source GitHub repository “Samuel-Green/B-3-Hackathon-Project-6” via the URL:
https://github.com/Samuel-Green/B-3-Hackathon-Project-6. The implementation of the
Rao’s Q index described in this manuscript can be found via the URL: https://github.com/
mattmar/rasterdiv/tree/bcubed_hackathon
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