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Summary
This document explores the application of deep learning methods within the B-CUBED project,
focusing on the integration of citizen science and opportunistic data for species distribution
modelling (SDM). It begins by presenting the general context surrounding the collection of
opportunistic data tainted by observation bias. These biases are central to the results obtained
from Species Distribution Modelling (SDM) algorithms. This is even more the case with
advanced deep learning techniques, collectively known as Deep-SDM. Yet the potential of these
methods is to be able to efficiently process and analyse vast datasets. This is followed by a
review of the technical aspects and specific deep learning algorithms used in the B-CUBED
project, focusing on their application in point process contexts that are crucial for modelling
species occurrence distributions. In addition, it discusses the incorporation of various types of
data into biodiversity data cubes in order to enrich the analysis. The practical application of
these methodologies is illustrated by case studies involving both simulated and real data,
including a detailed examination of species classification in Belgium (2010) using B-CUBED
data and insights from the NCGEAS project. This overview is supported by an extensive list of
references.

List of abbreviations
EU European Union
SDM Species Distribution Modelling
Deep-SDM Deep Learning Species Distribution Modelling
NCGEAS National Centre for Ecological Analysis and Synthesis
GBIF Global Biodiversity Information Facility
PO Presence Only
PA Presence Absence
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1. Introduction

1.1. Citizen Science and Opportunistic Data

The Global Biodiversity Information Facility (GBIF) database is enriched by a combination of
probabilistic and opportunistic samples, known as preferred samples. Probabilistic samples are
selected at random using statistical methods, providing an impartial and generalisable
representation of biodiversity in a given region. Opportunistic samples, on the other hand, often
come from unsystematic collections by researchers or amateurs via citizen science applications
(Bonnet et al., 2020; Callaghan et al., 2022). Opportunistic data may be influenced by the
accessibility of sites, the season, or species of particular interest. The combination of these two
types of sampling enables GBIF to maximise the quantity and diversity of the data collected,
while mitigating the biases inherent in each method taken in isolation. In this way, this
integrative approach offers a more complete and nuanced view of the world's biodiversity.

Despite their potential, presence-only (PO) data have limitations because they only indicate
where a species has been observed, without providing information about where the species is
absent. These data are typically derived from opportunistic observations or occurrence records.
However, using such observation data introduces several inherent challenges. One major issue
is the bias arising from imperfect detection; not all individuals of a species present in an area
are observed or recorded. Additionally, variations in sampling efforts across different regions
and times can further skew the data. The subjective perspectives of individual observers also
contribute to inconsistencies, as some species may be more likely to be reported than others.
These factors collectively impact the reliability of species distribution models (SDM) that are
trained using presence-only data (Fithian et al., 2015; Komori et al., 2020; Phillips et al., 2009).

To overcome the limitations of presence-only (PO) data, researchers have devised various
methodologies centred around the concept of pseudo-absences. Pseudo-absences, often
referred to as background or pseudo-negative points, involve designating certain geographic
locations as negative samples to compensate for the absence data. One common approach
involves sampling these pseudo-absences uniformly across the geographic space, creating
random background points. Another strategy selects pseudo-absences from locations where
other species, which are subject to similar sampling biases, have been observed, known as
target-group background points. These techniques aim to provide a more balanced dataset,
thereby enhancing the accuracy and reliability of species distribution models (SDMs) that are
trained with these augmented datasets
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1.2. Deep Learning Methods for SDM (Deep-SDM)
On the other hand, deep learning models have become increasingly prominent in the field of
species distribution modelling. These models are capable of processing vast amounts of
biodiversity data, effectively capturing the intricate, non-linear relationships between various
environmental factors and the presence or absence of species (Deneu et al., 2022; Estopinan et
al., 2024; Seo et al., 2021). By leveraging environmental and remote sensing variables, deep
learning techniques can uncover patterns that traditional methods might miss.

However, this adaptability also means that deep learning models can inadvertently incorporate
and magnify existing biases in the data. When working with datasets that are biased or
unbalanced in terms of species representation, the models might produce skewed predictions.
This issue underscores the importance of improving the robustness of deep learning
methodologies in species distribution modelling.

To address these challenges, researchers are exploring advanced techniques and strategies to
mitigate biases and enhance model reliability. Efforts are focused on developing more
sophisticated approaches to handle imbalanced data, ensuring that the predictions are more
accurate and generalizable. As the field evolves, the integration of robust deep learning models
promises to significantly advance our understanding of species distribution and support more
effective conservation efforts (Beery et al., 2021).

2. Deep learning algorithms for B-CUBED project
2.1. Technical aspects
A repository can be found at the following address on GitHub:
https://github.com/RYCKEWAERT/b-cubed_deep-sdm. The algorithms in the repository have
been developed exclusively using the Python programming language. The main library for deep
learning used is PyTorch, an open-source machine learning framework that offers great flexibility
and efficiency for the development of deep learning models. PyTorch is particularly appreciated
for its ability to perform calculations on GPUs, making it easier to train complex neural networks.

2.2. Deep Learning Methods
In the broad families of deep learning and artificial intelligence, there are several key
architectures, including Multilayer Perceptrons (MLPs) and Convolutional Neural Networks
(CNNs). MLPs are one of the simplest forms of artificial neural networks. They consist of several
layers of neurons, where each neuron in one layer is connected to all the neurons in the next
layer. This dense architecture enables MLPs to capture complex relationships between input
variables and expected responses, such as the presence or absence of a species in a given
geographical area. MLPs are particularly useful when the input data are feature vectors
extracted from environmental data such as temperature, humidity or altitude. CNNs, and in
particular deep architectures such as ResNet, are better suited to processing spatial data and
images thanks to their ability to capture local features through convolution operations. ResNet,
or residual networks, introduces residual connections that allow information to pass directly
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between layers, making it easier to train very deep networks without the problem of vanishing
gradients arising. For species distribution modelling, ResNet can be used to analyse satellite
images or environmental maps, identifying complex patterns and spatial features relevant to
predicting the presence of species in specific regions.

2.3. Deep Learning Methods in a context of point process
Assuming that the generation of observations follows a Poisson distribution, a loss function
must be defined to match the underlying Poisson distribution. The development of deep learning
methods has focused on a Poisson loss function which is formulated as the negative
log-likelihood for a Poisson model. Based on this loss, several methods have been developed to
resolve problems related to bias in the data, and these are still being evaluated.

2.4. Others data associated with biodiversity data cubes
To build a species distribution model, additional datasets known as covariates are also required.
Covariates include various environmental variables such as temperature, precipitation, soil type,
and vegetation cover, which influence species distributions. Terrestrial observation data and
satellite missions, like those providing remote sensing data, are invaluable in this context. They
supply detailed and up-to-date information on environmental conditions across vast areas.

● Observation Data: Information collected in the field or from databases on the presence
and abundance of species.

● Habitat Mapping: Spatial data on the distribution of habitats used by different species.
● Climatic Data: Climatic variables such as temperature, rainfall and sunshine that

influence the distribution of species.
● Geographical data: Information on topography, altitude and geology that may affect the

distribution of species.
● Anthropogenic data: Human factors such as land use, urbanisation and agricultural

activities that modify natural habitats.

3. Case studies
3.1. Simulated data
A simulation framework has been developed to build and evaluate deep learning algorithms.
This solution has been proposed in order to obtain ground truth. To this end, a database was
used to generate virtual species. The means and standard deviations of the real species are
used to generate the virtual species that have relationships between the input variables. For a
virtual species n, we construct a virtual ``ground truth" intensity function:

where and are estimated by sampling from one randomly selected real species. To do
so, species intensity is built as a multivariate Gaussian of climatic variables.
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where are the bioclimatic variables used, a vector containing means of all variables and
is the covariance matrix containing variances and covariances between variables.

3.2. Real data
3.2.1. Using B-CUBED data for species classification (Belgium, 2010)
This dataset is a typical biodiversity dataset from the B-CUBED project in Belgium. It represents
a subset from the year 2010, extracted from a more comprehensive dataset. The data is
organised into spatial cubes to facilitate detailed biodiversity analysis for that year. For more
information and access to the full dataset, please refer to the following
resources.[https://www.gbif.org/occurrence/download/0096919-240321170329656]
(https://doi.org/10.15468/dl.e3j5kv).

The covariate dataset contains 19 bioclimatic rasters obtained from the WorldClim and CHELSA
databases. The rasters represent various environmental factors such as temperature,
precipitation, and altitude. The full dataset is available : https://chelsa-climate.org/bioclim/
https://doi.org/10.1038/sdata.2017.122

3.2.2.NCGEAS
Data from the National Centre for Ecological Analysis and Synthesis (NCEAS) have been
openly released recently (Elith et al., 2020). This dataset includes presence-only and
presence-absence data from six global regions: Australian Wet Tropics (AWT), Canada (CAN),
New South Wales (NSW), New Zealand (NZ), South America (SA), and Switzerland (SWI). It
comprises data for 226 anonymized species from different biological groups. The dataset
contains different environmental predictive variables for each region, including climatic, soil
variables or location information (more details in Elith et al., 2020).

This dataset has been used to evaluate and compare various methods (Elith* et al., 2006;
Phillips et al., 2009; Valavi et al., 2022), allowing for comparisons with existing SDM methods.
All the species in each biological group in each region are used to form models based on
presence data only. The models are then evaluated with presence-absence data using the Area
Under Curve (AUC) criterion. Finally, AUC values are averaged by region or for all regions.

Table 1: Details of the Elith dataset where each line corresponds to the data used to
create a model.

Code Location Biological Group Species
number

Occurrences
number( PO)

Occurrences
number( PA)

AWT Australian wet tropics bird 40 3105 340
AWT Australian wet tropics plant 40 701 102
CAN Ontario, Canada bird 20 5063 14571
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NSW New South Wales bate 54 187 570
NSW New South Wales bird 54 1781 1839
NSW New South Wales plant 54 680 5329
NSW New South Wales reptile 54 675 1008
NZ New Zealand plant 52 3088 19120
SA South America plant 30 2220 152
SWI Switzerland tree 30 35105 10013
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