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Summary
This report provides a description of the general biodiversity indicators and variables that we
have chosen to implement in task 5.1 of the B-Cubed project, and briefly describes the
methodology, along with our reasoning and justification for choosing them.

In keeping with the goal of task 5.1, we primarily focus on general indicators and variables that
are widely known or used, simple to calculate, and can be calculated from GBIF data alone. In
this way we promote accessibility, ease of use, and longevity. We will implement five general
indicators, namely species richness, evenness, rarity, Hill-Shannon diversity, and Hill-Simpson
diversity, as well as two essential biodiversity variables, species occurrences and taxonomic
distinctness. Together these should give a broad and intuitive overview of biodiversity. We will
also implement three other variables, total occurrences, density of occurrences, and mean year
of occurrences, which do not directly indicate biodiversity but provide helpful context for
interpretation.

A secondary aspect of this task is to develop indicators to fill policy needs based on stakeholder
feedback. Based on preliminary results from task 1.5 and 1.6, we identified data gaps and
biases as an important theme. Specifically, we are developing an indicator of data sufficiency to
measure whether any given GBIF dataset is complete enough to reliably calculate the general
indicators we are implementing. We will also implement an indicator of landscape heterogeneity
being developed in another task of the B-Cubed project, which can be used as a proxy indicator
for biodiversity when there is not enough biodiversity data available.

Given that B-Cubed is an ongoing project and final results from stakeholder consultations are
not yet available, the indicators and variables described in this milestone should not be
considered final. As the task evolves, we may still implement additional indicators and/or
variables to suit stakeholder needs.

List of abbreviations
BIP
CBD
EBV
EU
GBIF
GEO BON
IAS
LPD
LPI
MEA
NGO
RLI
SRLI
WBI

Biodiversity Indicators Partnership
Convention on Biological Diversity
Essential Biodiversity Variable
European Union
Global Biodiversity Information Facility
Group on Earth Observations Biodiversity Observation Network
Invasive Alien Species
Living Planet Database
Living Planet Index
Multilateral Environmental Agreement
Non-Governmental Organisation
Red List Index
Sampled Red List Index
Wild Bird Indicator
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1. Introduction
Biodiversity indicators play a crucial role in monitoring biodiversity trends (Jones et al., 2011),
assessing progress towards conservation goals (Buckland et al., 2012), and understanding the
impacts of biodiversity policies (Nicholson et al., 2012). They also influence management
decisions and resource allocation towards urgent conservation issues (Robertson & Hull, 2001).
Governments use biodiversity indicators to set policies and report progress to Multilateral
Environmental Agreements (MEA), non-governmental organisations (NGOs) use them to raise
awareness about biodiversity issues, news media use them to report on government actions
and environmental issues, researchers use them for analysis, and consultancies use them for
reports (Biodiversity Indicators Partnership, 2011). They are thus a fundamental aspect of the
science-policy interface.

One key aspect of indicators is that they convey information about something more than
themselves and are therefore purpose-dependent (Biodiversity Indicators Partnership, 2011;
Gregory et al., 2018; Wilson et al., 2016). Despite the lack of a clear definition for biodiversity, as
Newman et al. (2017) point out, it broadly refers to the variation of life, structured into
compositional, structural, and functional dimensions across different levels, including genetic,
species, and ecosystem diversity (Fig. 1). Given its complexity, no single metric can fully capture
its multifaceted nature. Consequently, a wide array of biodiversity indicators has been
developed, varying from broad and simple to specific and complex.

Figure 1: Simplified overview of biodiversity, illustrating its compositional, structural, and
functional dimensions. This encompasses genetic variability, species richness,
ecosystem types, habitat configuration, ecosystem complexity, ecological processes,
and ecosystem services.

The Group on Earth Observations Biodiversity Observation Network (GEO BON) introduced the
concept of Essential Biodiversity Variables (EBVs) to reduce the variety of possible biodiversity
measurements to a manageable common framework of key measurements divided into six
classes: genetic composition, species populations, species traits, community composition,
ecosystem structure, and ecosystem function (Pereira et al., 2013). These EBVs act as
intermediates between raw biodiversity data and biodiversity indicators. For example, species
abundance is an EBV in the species populations class, which can be calculated from various
types of survey data such as transects, aerial surveys, camera trap images, or mark-recapture,

4



M20 List of biodiversity indicators to be implemented

and then feeds into biodiversity indicators such as the Living Planet Index (LPI) and the Wild
Bird Index (WBI).

However, indicators and EBVs depend on access to relevant and reliable data. While advances
in technology have improved tracking and counting of bird and mammal populations (Lausch et
al., 2016; Nichols et al., 2011; Rose et al., 2015), our datasets are incomplete even for the most
comprehensively studied taxa, and woefully lacking for others (Barnosky et al., 2011; Conde et
al., 2019; Hortal et al., 2015; Jetz et al., 2019; Meyer et al., 2015; Proença et al., 2017; Turak et
al., 2017). This scarcity of data hinders decisions about which species, ecosystems, or
geographical areas to protect and limits our ability to assess global biodiversity
comprehensively.

Volunteers have been involved in the collection of biodiversity data for more than a century, but
recently the collection of biodiversity data by citizen scientists has accelerated into a global
phenomenon (Chandler et al., 2017; Rapacciuolo et al., 2021) thanks in large part to the rise of
internet-based platforms like eBird and iNaturalist. While sometimes opportunistic and widely
varying in the degree of rigour and planning involved in their collection, citizen science datasets
tend to be numerous, intensive, cover large areas, and can be used and contributed to by
scientists and non-scientists alike (Rapacciuolo et al., 2021). The Global Biodiversity
Information Facility (GBIF) provides a publicly accessible database of more than 2.6 billion
occurrences, many of which are contributed by citizen science platforms, and is a highly
valuable resource for use in indicators for policy analysis. Such a massive quantity of open data
may help to solve the data crisis, but suffers from a lack of standardisation and completeness,
as well as severe biases over time and space (Chandler et al., 2017; Troudet et al., 2017; Troia
and McManamay, 2016). There is evidence that these issues can be partially overcome through
mitigation techniques, and that after careful treatment even unstructured and opportunistic data
can be safely used to calculate indicators, especially when combined with long-term monitoring
data (Rapacciuolo et al., 2021). However, care and rigour should be used when performing
analysis to ensure the outputs are reliable. The B-Cubed project aims to help standardise the
processing and aggregation of these data. This can be facilitated by standardised, accessible,
reproducible workflows.

The goal of task 5.1 of the B-Cubed project is to provide standardised publicly accessible
workflows to calculate general biodiversity variables and indicators from GBIF data cubes.
Preliminary work on this idea was done by the sTWIST project (Theory and Workflows for Alien
and Invasive Species Tracking; e.g. McGeoch et al., 2023), which focused on developing
indicators of invasive alien species (IAS) and their impacts, and the TriAS project (Tracking
Invasive Alien Species; Oldoni et al., 2020), which also focused on IAS indicators and pioneered
the use of GBIF data cubes. Within the sTWIST project, new indicators for alien species
numbers and impacts of IAS have been developed, which are in the process of getting
published. Once publicly accessible, the potential of adopting them in the B-Cubed project will
be explored. The TriAS project used localised (Belgium only) high quality GBIF datasets of alien
species checklists and occurrences, and provided workflows to calculate indicators related to
alien species invasions. These indicators are available at
https://trias-project.github.io/indicators/index.html and act as a proof of concept. In B-Cubed
task 5.1 we will build on this pioneering work by providing generalised workflows to calculate a
diverse set of common biodiversity variables and indicators across GBIF data cubes that cover
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any taxon and/or region. These workflows can then also be applied to calculate indicators on
modelled data cubes for both current distributions and future scenarios, e.g. the cubes being
developed in tasks 4.1 (habitat suitability), 4.2 (multi-site generalised dissimilarity) and 4.3
(network invasibility) of the B-Cubed project.

To be relevant and useful, an indicator should address actual information needs, be responsive
to change, be based in scientific theory, and have enough suitable data available to be
calculated reliably. Therefore, when developing indicators, it is important to first consult with
stakeholders to assess needs. This task (5.1) of the B-Cubed project is intended to both a) take
advantage of existing commonly used indicators that can be calculated with occurrence data
and b) develop new useful indicators based on the results of stakeholder consultations from
tasks 1.5 (report on the needs for European biodiversity policy) and 1.6 (landscape analysis of
biodiversity monitoring globally). At this stage tasks 1.5 and 1.6 are ongoing, with only some
preliminary results available; therefore this milestone primarily focuses on the implementation of
existing indicators.

We chose to focus on indicators and EBVs that are common, general, simple, widely known or
used, and can be calculated from GBIF data alone, which we refer to as general biodiversity
indicators. This allows for workflows with minimal dependencies and therefore increased
longevity and ease of maintenance.

A secondary focus in this task is on developing new indicators of data gaps and biases.
Preliminary results from stakeholder consultations in task 1.6 suggest that these are major
issues for policymakers, stymieing attempts to gain a comprehensive understanding of global
biodiversity and biodiversity change. Therefore, indicators that highlight and/or subvert these
data gaps would be of great use to them. Furthermore, stakeholders are wary of using citizen
science data in indicators for policy (preliminary results from task 1.5). Therefore, we aim to
provide an indicator that evaluates whether reliable results can be obtained when applying other
indicators to a given set of data.

The aim of this milestone document (M20) is to describe and justify the biodiversity indicators
and variables we have chosen to implement in task 5.1.

2. Biodiversity variables and indicators
We assessed the methodology and data requirements of existing indicators and variables to
determine their suitability for use with occurrence data, and selected a set of common,
well-known existing indicators and variables that can be calculated exclusively from occurrence
data (Table 1). In addition, we identified a gap where we can fill a policy need by developing a
novel indicator, which we are calling a data sufficiency indicator. This can be calculated from
GBIF occurrence data, but the development process also requires high resolution climate data,
which can be freely obtained from Worldclim (Table 1). Further indicators targeted to policy
needs will be determined after final results from stakeholder consultations conducted in tasks
1.5 and 1.6 are available for discussion.
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Table 1: Biodiversity variables and indicators to be implemented in task 5.1

Indicator or variable Type Data needed Source Reference

Total occurrences Variable Occurrences GBIF
Density of occurrences
(occ/km2) Variable Occurrences GBIF

Mean year of occurrences
(newness) Variable Occurrences GBIF

Species richness Indicator Occurrences GBIF Magurran, 1988

Evenness Indicator Occurrences GBIF Pielou, 1966;
Kvålseth, 2015

Rarity Indicator Occurrences GBIF Rabinowitz, 1981
Hill-Shannon diversity Indicator Occurrences GBIF Hill, 1973
Hill-Simpson diversity Indicator Occurrences GBIF Hill, 1973
Species occurrences EBV Occurrences GBIF Pereira et al., 2013

Taxonomic distinctness EBV Occurrences,
Taxonomy GBIF Clarke & Warwick,

1999

Data sufficiency Indicator Occurrences,
Climate data

GBIF,
Worldclim Dove et al., 2023

Landscape Heterogeneity
Index Indicator Environmental

data

Google
Earth
Engine:
Remote
Sensing
Data,
Digital
Elevation
Models

MacFadyen et al.,
2016

2.1. General indicators
The main focus of task 5.1 is on general biodiversity indicators, which can be calculated by
anyone from publicly available datasets and give a broad overview of biodiversity. This is in
contrast to specialised indicators like the Living Planet Index (LPI) that are managed and
curated (e.g. the LPI is maintained and updated by the Zoological Society of London with
support from the World Wide Fund for Nature), require specialised datasets (e.g. the Living
Planet Database), are complicated to calculate (e.g. the LPI requires a series of complex
statistical operations), and are targeted to provide specific insights (e.g. the LPI reports changes
in vertebrate species population abundance over time).

2.1.1. Species richness
Species richness is the total number of species present in a sample (Magurran, 1988). It is a
fundamental and commonly used measure of biodiversity, providing a simple and intuitive
overview of the status of biodiversity. However, richness is not well suited to measuring
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biodiversity change over time, as it only decreases when local extinctions occur and thus lags
behind abundance for negative trends. While it may act as a leading indicator of alien species
invasions, it will not indicate establishment because it ignores abundance. Nor will it necessarily
indicate changes in local species composition, which can occur without any change in richness.

Although richness is conceptually simple, it can be measured in different ways. We will
implement four different measures of richness, described below.

2.1.1.1. Observed richness
Observed richness is calculated by summing the number of unique species observed for each
year or each cell. Observed richness is highly dependent on the comprehensiveness of the
dataset it is being applied to. If some regions are more intensively, carefully or systematically
sampled than others, this will likely reflect as higher observed richness. Observed richness also
depends on the relative abundance and spatial aggregation of each species, with less abundant
and less aggregated species less likely to be discovered during surveys (Hillebrand et al.,
2018), as well as the detectability of each species. However, there are ways of mitigating these
effects through estimation methods, as explained in section 2.1.1.3 below. Furthermore, the
advent of new survey methods, such as camera traps and eDNA, has significantly altered the
detectability of some species.

2.1.1.2. Cumulative richness
Cumulative richness is calculated by adding the newly observed unique species each year to a
cumulative sum. This indicator provides an estimation of whether and how many new species
are still being discovered in a region. While an influx of alien species could cause an increase in
cumulative richness, a fast-rising trend as shown in Fig. 2 is likely an indication that the dataset
is not comprehensive and therefore observed richness will provide an underestimate of species
richness.
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Figure 2: Cumulative species richness of amphibians in Europe, measured from
1803-2022. Source data cube contains all GBIF occurrence records of amphibians
throughout Europe.

2.1.1.3. Estimated richness
Species richness can be estimated through different standardisation procedures as a way to
mitigate the effects of sample size and sampling biases. One way to do this is by equalising
sample size. The specaccum function of the VEGAN package (Dixon, 2003) for R is used to
calculate a species accumulation curve (a plot of cumulative species richness as a function of
sample size) for each year or grid cell. The smallest sample size from among all the grid cells or
years in the dataset is then used as a reference to select richness values from each curve. This
is called rarefaction. It is also possible to use a larger sample size as a reference, but this
requires extrapolation of smaller samples, which is more prone to error than rarefaction.

However, results from sample-size based estimation can be problematic as they depend on
both richness and evenness. A sample from a community with a more even distribution of
individuals across species is likely to show higher richness than a sample of the same size from
a community where many species are rare, as the rare species are less likely to appear in the
sample. Similarly, a community containing a lot of species will appear less rich than it actually is
if the sample size used for comparison is too small. Detectability also plays an important part;
hard to detect species are less likely to appear in the sample, so communities in which rare
species are more easily detectable are likely to yield richer samples.

Another way to estimate species richness is to standardise by coverage. The iNEXT package
(Chao et al., 2014; Hsieh et al., 2016) for R is used to estimate species richness at an equal
level of coverage (e.g. 0.95) for each cell or year in a biodiversity data cube. Coverage is the
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proportion of individuals in the community belonging to species in the sample. So, at a coverage
of 0.95, 95% of individuals in the community belong to species detected in the sample while 5%
belong to species that are not detected in the sample. Coverage is estimated based on the
frequencies of species already in the sample. It can be illustrated using a species accumulation
curve, the slope of which represents the probability of detecting a new species with the next
individual you sample from a community. At a sample size of zero, the slope would be one,
meaning the next individual sampled has a 100% probability of being a species not already in
the sample. Therefore, a coverage value of one corresponds to the asymptote of a species
accumulation curve (slope of zero), meaning no new species would be uncovered through
further sampling.

2.1.2. Evenness
Species evenness is a commonly used indicator that measures how uniformly individuals are
distributed across species in a region or over time. It provides a complement to richness by
taking relative abundance into account.

Although GBIF provides information about abundances as individual counts, the majority of
entries lack this information. Hence, evenness can only be calculated using the proportions of
observations rather than proportions of individuals. Strictly speaking, the evenness measures
therefore indicate how uniformly species are represented in the respective data set rather than
the true evenness of the ecological community.

We will provide two measures of evenness.

2.1.2.1. Pielou’s evenness
First, we will implement Pielou’s evenness (1966) because it is well-known and commonly used.
Pielou’s evenness is calculated as

(1) 
−

𝑖=1

𝑆

∑ 𝑝
𝑖
×𝑙𝑜𝑔 𝑝

𝑖( )
𝑙𝑜𝑔 𝑆( )

where S is the number of species and pi is the proportion of occurrences represented by
species i.

2.1.2.2. Williams’ evenness
However, an analysis of evenness properties by Kvålseth (2015) showed that an evenness
index introduced by Williams in 1977 in an unpublished manuscript has two important properties
which Pielou’s does not. The properties in question are complex mathematical properties known
as the Schur-Concavity and value validity, but we attempt to describe them here more simply. If
a measure of evenness is Schur-concave, it means that when the distribution of individuals
becomes more evenly spread across species, the measure of evenness will stay the same or
increase, but never decrease. Value validity means that an evenness index should provide
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sensible and meaningful values across its range for any given distribution of species
abundances. Given that these are intuitively useful properties for an evenness index, we also
implement Williams’ evenness index, which Kvålseth referred to as E9 but we will refer to as
Williams’ evenness.

Williams’ evenness is calculated as

(2)1 −  
𝑆

𝑖=1

𝑆

∑ 𝑝
𝑖
2−1( )

𝑆 − 1

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

1
2

where S is the number of species and pi is the proportion of occurrences represented by
species i.

2.1.3. Hill diversity
Hill (1973) introduced the concept of Hill diversity, which assumes that the number and relative
abundance of species are inseparable components of diversity. Hill diversity uses a single
equation to calculate multiple measures of diversity by varying a single parameter ℓ, which
changes the emphasis on rare vs common species (Roswell et al., 2019). It represents the
mean rarity of sampled species, and is calculated as

(3)𝐷 =  
𝑖=1

𝑆

∑ 𝑝
𝑖

𝑟
𝑖( )𝑙( )1/𝑙

where D is diversity, S is the number of species, pi is the proportion of individuals belonging to
species i, ri is the rarity of species i, and ℓ determines the rarity scale for the mean.

While ℓ can theoretically take almost any value, three common measures of diversity are special
cases: species richness, and modified versions of the Shannon and Simpson diversity indices
(Roswell et al., 2019). These three measures occur when ℓ takes the value of 1, 0 (or near-zero,
as ℓ cannot actually take the value of 0), or -1, respectively. Richness uses an arithmetic scale
(the arithmetic mean), thus giving rare species a lot of leverage. By contrast, Hill-Shannon
diversity uses a logarithmic scale (the geometric mean), treating common and rare species
equally, and Hill-Simpson diversity uses a reciprocal scale (the harmonic mean), giving common
species higher leverage.

2.1.3.1. Species richness
Using the Hill diversity equation, richness becomes simply S, the number of species, and is thus
identical to richness calculated without Hill diversity.
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2.1.3.2. Hill-Shannon diversity
Hill-Shannon diversity is actually e (base of the natural log) raised to the power of the Shannon
index. It is estimated for each year or cell count using the iNEXT package, standardised by
coverage, as

(4)𝑒
−

𝑖=1

𝑆

∑ 𝑝
𝑖
𝑙𝑛 𝑝

𝑖( )

where S is the number of species and pi is the proportion of occurrences represented by
species i.

2.1.3.3. Hill-Simpson diversity
Hill-Simpson diversity is the inverse of the Simpson index. It is estimated using the iNEXT
package for each year or cell, standardised by coverage, as

(5)
1

𝑖=1

𝑆

∑ 𝑝
𝑖( )2

where S is the number of species and pi is the proportion of occurrences represented by
species i.

Both Hill-Simpson and Hill-Shannon diversity describe a combination of richness and evenness
that reduce the inadequacies of either measure alone.

2.1.4. Rarity
Rarity is the scarcity or infrequency of a particular species in an area. A rare species might have
a small population size, a limited distribution, or a unique ecological niche (Maciel, 2021;
Rabinowitz, 1981). Rarity can also be a biodiversity indicator when summed over multiple
species in an area, and may provide important insight for determining conservation priorities. It
can be measured in different ways, but we will provide workflows to calculate rarity by
abundance (using number of occurrences as a proxy) and by area. When measured over time
rarity may indicate potential threats or changes in the environment.

2.1.4.1. Abundance-based rarity
Abundance-based rarity is the inverse of the proportion of total occurrences represented by a
particular species. The total summed rarity for each grid cell or year is calculated (sum the rarity
values of each species present there).
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(6)
𝑖=1

𝑆

∑ 1
𝑝

𝑖
( )

where S is the number of species and pi is the proportion of occurrences represented by
species i.

2.1.4.2. Area-based rarity
Area-based rarity is the inverse of occupancy frequency (proportion of grid cells occupied) for a
particular species. The total summed rarity for each grid cell or year is calculated (sum the rarity
values of each species present there).

(7)
𝑖=1

𝑆

∑ 1
𝑛

𝑖

𝑁
( )

where S is the number of species, N is the total number of occupied grid cells, and ni is the
number of grid cells occupied by species i.

2.2. Specialised indicators
In addition to general biodiversity indicators, we will provide workflows for certain specialised
indicators that provide useful biodiversity information not covered by general indicators and
variables, or that advance specific policy goals or needs according to stakeholder feedback from
tasks 1.5 and 1.6. Other tasks of the B-Cubed project already focus on phylogenetic indicators
(task 5.2) and invasive alien species impact indicators (task 5.3), therefore task 5.1 will aim to
cover another important policy need: indicators of data completeness.

2.2.1. Data sufficiency
Biodiversity sampling varies globally in intensity and methodology, with large data gaps and
biases across systems, taxa, time, and space (Hughes et al., 2021). Rich countries fund more
studies than poor countries. Biodiversity in the global north is far better understood than in the
global south (Antonelli et al., 2023; Dove et al., 2023). Birds and mammals are better
understood than reptiles and amphibians (Dove et al., 2023), which are in turn better
understood than invertebrates (Cardoso et al., 2011; Hochkirch et al., 2021). Terrestrial systems
are better understood than freshwater systems (Darwall et al., 2011; Dove et al., 2023). These
inconsistencies exacerbate the data crisis, confounding the interpretation of biodiversity
indicators and making it more difficult to determine the changing state of global biodiversity.

Citizen science datasets in open access repositories like GBIF have tremendous potential to
help overcome these gaps and biases in biodiversity data. However, thus far citizen science
data collection activities skew strongly toward the global north and toward charismatic taxa,
especially birds, while leaving speciose invertebrate groups and diversity hotspots in the global

13



M20 List of biodiversity indicators to be implemented

south poorly sampled and underrepresented (Chandler et al., 2017; Troudet et al., 2017), thus
mirroring or even widening existing data collection biases. Furthermore, because citizen science
data represents a variety of datasets, sometimes opportunistically collected, and without
standardisation, they have broad prevalence but very poor completeness compared to
systematic surveys, with the majority of grid cells being poorly surveyed (Troia and
McManamay, 2016). These issues with citizen science data have resulted in underutilization and
mistrust by researchers and stakeholders due to a perception that with such data it is not
possible to reliably calculate trends across space and time (Rapacciuolo et al., 2021).
Unfortunately, while we have some understanding of the existence and extent of biodiversity
data gaps and biases, little is known about how they affect the reliability of indicator trends
(Dove et al., 2023).

Pioneering work on the topic of biodiversity indicator reliability has been done for two specific
indicators: the Red List Index (RLI) and the Living Planet Index (LPI). The Sampled Red List
Index (SRLI) was developed to solve the problem of assessing speciose taxonomic groups
without comprehensive sampling (Baillie et al., 2008). The idea was that when the RLI was
calculated on a random sample of species of a specific minimum size from a particular taxa, the
trend should be in the correct direction 95% of the time. The first version of the SRLI determined
a set sample size of 1500 for all taxa, which was later revised to include smaller sample sizes
(200 - 400) for decadal reassessments to improve efficiency (Henriques et al., 2020). Building
on this work, Dove et al. (2023) produced a more flexible method for the LPI, which used a
model of trend reliability to provide specific minimum sample sizes for each disaggregated
regional taxonomic group in the Living Planet Database (LPD).

However, these previous studies involved biodiversity over time, while it is also often useful or
important to compare biodiversity across space. The data cubes the B-Cubed project is
developing are based on occurrence data and have an important spatial element. Therefore we
are attempting for the first time to develop a method to measure the reliability of indicators when
applied to gridded occurrence data. We will adapt and generalise the methodology developed
by Dove et al. (2023) to measure whether any given set of GBIF occurrence data has a
sufficient sample size (number of observations) to get reliable results when applying a given
indicator.

The data sufficiency indicator will involve applying a model of reliability (e.g. a multiple
regression model) to a dataset. Based on the sample size and underlying parameters and/or
biases of the dataset, the result of the model will determine whether a given indicator is likely to
give a sufficiently accurate result, according to a “threshold of reliability” (the term ‘reliability’
reflects that it is estimated by a model, as accuracy cannot be directly measured for indicators
calculated on real world data). The threshold will be pre-determined, and the model will be built
and parameterized using thousands of virtual species created using the “virtual species” R
package (Leroy et al., 2016). The virtual species will be combined into virtual biodiversity cubes,
which will then be sampled in multiple sizes and with different simulated biases. Indicators will
be applied to the sampled cubes as well as the unsampled cubes and the results compared
(e.g. using a distance measure) to determine how sample size, sample biases, and other
parameters of the data affect indicator accuracy.
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2.2.2. Landscape heterogeneity
In regions with a small amount of available occurrence data, proxy variables have been
developed using available environmental data to estimate the potential distribution of species
and hot spots of biodiversity. In large protected areas, landscape heterogeneity and complexity
serve as vital indicators of biodiversity by providing a mosaic of habitats and ecological niches.
Landscape diversity (or heterogeneity) represents the potential of an area to support an
associated diversity of species and maintain functional diversity through ecological processes
(MacFadyen et al., 2016). Heterogeneity in topography, vegetation types, and microclimates
facilitates species coexistence by offering varied resources and conditions, which is essential for
maintaining higher levels of biodiversity (Walz & Syrbe, 2013). Complexity, referring to the
spatial arrangement and connectivity of these habitats, enhances ecosystem resilience and
functionality by promoting gene flow, species dispersal, and adaptation to environmental
changes (Walz & Syrbe, 2013). Moreover, biodiversity intactness and the preservation of large
or contiguous wilderness areas within these landscapes are crucial for sustaining ecosystem
services and natural processes (Hooper et al., 2005). Intactness indicates the degree to which
human activities have impacted species abundance and ecosystem functions. High biodiversity
intactness in wilderness areas signifies minimal human disturbance, which is essential for
conserving species in their natural states and ensuring the long-term viability of ecological
networks (Aycrigg et al., 2022). These areas act as benchmarks for assessing human impacts
and can be crucial indicators of biodiversity change and quality necessary for conservation
efforts aimed at preserving Earth's remaining natural habitats and their inherent biodiversity.

There are many possible ways of calculating landscape heterogeneity. While no specific method
has yet been chosen, the methodology is being developed in task 4.2 (dissimilarity cube) and is
intended to be implemented in task 5.1 when ready.

2.3. Essential biodiversity variables
While the focus of task 5.1 is primarily on indicators, we will also provide workflows for two
EBVs that can be calculated strictly from data provided by GBIF.

2.3.1. Species occurrences
Species occurrences are mapped by calculating the total number of occurrences of a given
species for each cell. This represents the occurrence frequency distribution, and also indicates
the observed species distribution. The number of occurrences can act as a proxy for relative
abundance of species with a similar detectability, which is an important aspect of biodiversity
although not an indicator when calculated in isolation.

2.3.2. Taxonomic distinctness
Taxonomic distinctness measures the taxonomic relatedness between species, providing a
measure of biodiversity that accounts for evolutionary relationships. A distance matrix based on
pairwise taxonomic relationships is calculated for each cell using the taxize package
(Chamberlain & Szöcs, 2013; Chamberlain et al., 2020), then taxonomic distinctness is
calculated as the Taxonomic Distinctness Index (TDI; Clarke & Warwick, 1999):
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where S is the number of species, Ri and Rj are the taxonomic ranks of species i and j (from the
GBIF Taxonomic Backbone), and L is the maximum number of taxonomic ranks.

2.4. Other variables
We will provide workflows for three other variables which do not provide any information about
biodiversity directly, but are nonetheless useful for evaluating the quality, comprehensiveness,
or age of a dataset.

2.4.1. Total occurrences
The total number of occurrences is calculated by summing the occurrences of all species
observed for each cell or year. This variable provides an overview of the comprehensiveness
and distribution of data in the cube being analysed, and may be helpful, or even vital, for
interpreting the results of calculated indicators.

2.4.2. Density of occurrences
Density is calculated by summing the total number of occurrences per square kilometre for each
cell or year. This provides similar information to total occurrences, but is adjusted for cell area.

2.4.3. Mean year of occurrence
The mean year of occurrence is calculated per cell, giving an indication of how recent the data
is for each cell. A recent mean year is not necessarily an indication of quality, as some countries
or regions have been conducting comprehensive biodiversity monitoring for many years and will
therefore reflect an older mean year of occurrence, while others may show a recent mean year
due to e.g. the sudden availability of large amounts of citizen science data.
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