

Standardising biodiversity data for improved policymaking: Introducing the B-Cubed project

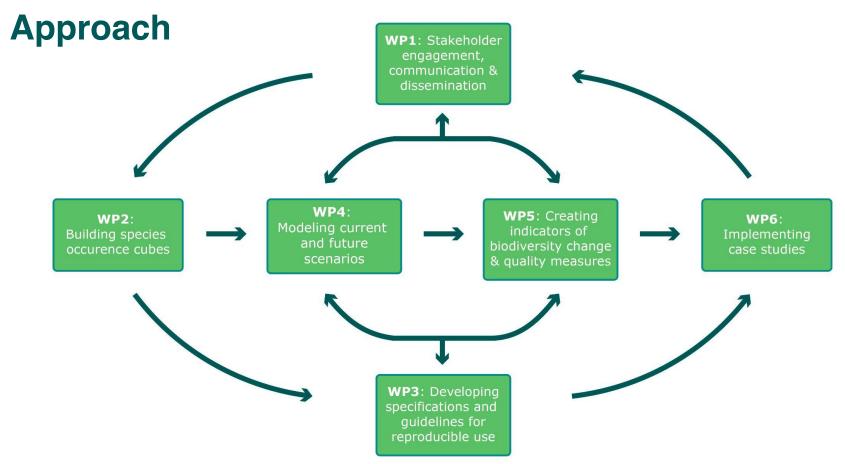
About

Challenges

The global biodiversity crisis requires rapid, reliable and repeatable biodiversity monitoring data which decision makers can use to evaluate policy.

Opportunities

Such information – from local to global level and within relevant timescales – calls for an **improved** integration of data on biodiversity from different sources.



Aim

B-Cubed is **standardising access to biodiversity data**, empowering policymakers to address the impacts of biodiversity change.

Consortium

RESEARCH INSTITUTE NATURE AND FOREST

Solutions & Activities

Policy alignment

to enhance the use of biodiversity indicators in policy decisions

Evidence base

to provide fast access to up-to-date biodiversity data for policy

Automated workflows

to facilitate automated data aggregation and output

Cloud computing

to enable models of biodiversity at high resolution and frequency

Capacity building

to train in biodiversity informatics and cloud computing

Case studies

to test solutions' applicability and unite biodiversity informaticians

Data & Evidence

B-Cubed aims to improve the existing policy evidence base and contribute to better alert systems by providing fast access to **pre-aggregated and modelled biodiversity data** and **standardised biodiversity indicators** responsive to the addition of new data.

Species occurrence cube BIODIVERSITY CUBES Dissimilarity cube Network invasibility cube

Workflows

To improve the access to rapid biodiversity data at a low cost, B-Cubed is **packaging known methods together into standardised workflows**. They can be run by anyone for any region and can be updated according to advances in data, methods and models.

Exemplar workflows

Repeatable workflows to create data cubes

Deep learning

Automated workflows to calculate indicators from biodiversity data cubes

Automated workflows

Deep-learning to discover long-term spatiotemporal dependencies in species distribution models

Cloud computing

To enable users to run more ambitious models of biodiversity at high resolution and frequency, B-Cubed is taking advantage of the flexibility and scalability of a cloud computing environment for biodiversity and environmental data.

B-Cubed is building software to help develop services and community access models that allow researchers to configure and calculate species occurrence cubes on demand based on their parameterisation, resulting in a cube that is stored in the cloud and accessible via a DOI.

Policy alignment

To ensure an improved match between policy and the biodiversity data used to inform it, B-Cubed works closely with existing European and international biodiversity initiatives to **identify and address policy needs**.

European biodiversity initiatives

B-Cubed works closely with other European projects to identify data needs for policies and targets aligned with the new European Green Deal.

International science-policy convergence

B-Cubed is reviewing the existing policy and reporting needs by conducting a landscape analysis and consultation.

Capacity building

To ensure B-Cubed's tools meet openness standards and to **build better capacity in biodiversity informatics and cloud computing**, the project is developing a number of guidelines, training programs and activities.

Software requirements and assessment

FAIR data products

Hackathon

Tutorials

Training and support

Case studies

The application and usefulness of B-Cubed's algorithms and software are demonstrated through the project's **four case studies**.

They cover different locations varying in geographical extent, biodiversity richness and data availability.

Regional indicators in Europe

Biological invasions in South Africa

Stakeholder-driven case study

Global and continental biodiversity change

