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Summary 

Biodiversity indicators derived from occurrence cubes must be assessed for reliability and 

meaningfulness. Key aspects include robustness measures, uncertainty quantification, and 

interpretation frameworks. Robustness measures evaluate adequacy and representativeness of 

the data. Furthermore, uncertainty quantification, using bootstrapping, ensures correct indicator 

interpretation, supporting informed decision-making. Best practices are explored based on 

existing techniques and preliminary analyses in R. 

In light of data variability, measures for data cube and species robustness are proposed. Data 

cube robustness metrics assess data quality across spatial, temporal, and taxonomical 

dimensions. These metrics can serve as early warning systems during data exploration, e.g., 

indicating when not enough data is present or when strong data clustering is present along one 

or more dimensions. For species robustness, a cross-validation technique is proposed where 

species are systematically excluded and the indicator is recalculated: leave-one-species-out 

cross-validation. The method is a tool for data exploration that quantifies the influence of a single 

species on indicator calculation. 

In light of indicator variability, methods for uncertainty quantification and effect classification are 

discussed. Indicator uncertainty can be calculated using the bootstrap resampling technique, from 

which confidence intervals can be generated. Four interval types are compared: (1) normal: 

assumes normal distribution, (2) basic: centers interval using percentiles, (3) percentile: uses 

bootstrap distribution percentiles, and (4) bias-corrected and accelerated (BCa): percentile that 

adjusts for bias and skewness. Based on literature and preliminary analysis, the BCa interval is 

recommended over the percentile interval as it accounts for bias and skewness in the bootstrap 

distribution. The normal and basic intervals are included for the sake of simplicity, but rarely 

recommended in practice. Finally, effect classification helps interpret trends by comparing 

confidence limits with reference values and thresholds. 

The proposed methods will be bundled in an R package called dubicube. The functions in this 

package can be used for exploratory analyses of occurrence cubes, as well as uncertainty 

calculation and interpretation of derived indicators. 
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1 Introduction 

Although we can always calculate indicators from an occurrence cube, it is essential to evaluate 

whether those indicators are reliable and meaningful. The key questions are as follows: Can the 

calculated indicator values be interpreted with confidence? Do we have sufficient and 

representative data to support valid conclusions? To address this, we focus on three 

complementary aspects: robustness measures, indicator uncertainty, and interpretation 

frameworks. 

 

In this report, we introduce measures of robustness as a way to evaluate the applicability and 

reliability of biodiversity indicators. These measures assess whether the underlying data are 

adequate and representative for drawing meaningful conclusions about a given species, time 

period, or area. Note that this is different from the statistical definition of robustness which entails 

the resistance of a statistical method, estimator, or model to outliers or violations of assumptions. 

Our robustness measures are properties of the data, calculated alongside indicator values. They 

are not a property of the indicator itself.  

 

Indicator values are sometimes calculated without a corresponding measure of uncertainty, such 

as confidence intervals (Rowland et al., 2021), although its importance is paramount for correct 

interpretation, and consequently, for making adequate management and policy decisions 

(Fischhoff & Davis, 2014; Milner-Gulland & Shea, 2017). For indicators from occurrence cubes, 

we propose a framework for uncertainty calculation using bootstrapping, a flexible, non-

parametric method. Furthermore, to aid in interpretation, we introduce an effect classification 

method to categorise indicator effects where confidence intervals are compared with reference 

values. 

 

By combining measures of robustness, uncertainty quantification, and a clear interpretation 

framework, we ensure that biodiversity indicators are not only calculated but also contextualised 

in a way that supports confident and meaningful decision-making. 

 

2 Example Analyses and Dataset 

Example analyses were performed with R v4.4.2 (R Core Team, 2024) using RStudio (Posit team, 

2024). The code can be consulted in the repository of Langeraert et al. (2025, v1.4.0). Data 

wrangling and visualisation were done using the tidyverse package (Wickham et al., 2019). 

 

As an example dataset, we used the ‘europe_insect_cube’ occurrence cube of the b3gbi R 

package v0.2.2 (Dove, 2024). This cube is derived from European insect data from the ‘Natural 

History Collections of the Faculty of Biology AMU’ dataset published on GBIF (GBIF.org, 2024). 

We selected the data from 2011-2020. This data cube is structured as a single-resolution 1 km² 

grid within the EEA grid reference system. The cube contains 149 grid cells covering coordinates 

from (4557000, 1695000) to (5284000, 3479000), with a total of 141,168 observations, 

representing 482 species.  
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3 Data Variability and Robustness 

3.1 Measures for Data Cube Robustness 

We aim to develop general robustness measures for data cubes to assess their applicability, 

either in general or in relation to specific biodiversity indicators. These measures evaluate data 

quality across different dimensions of the cube and support exploratory data analysis: 

 

● Spatial 

○ Data Distribution: Is the data clustered in specific areas or evenly spread across 

the region? 

○ Geographical Coverage: Are species confined to small areas, or are they 

widespread throughout the region? 

● Temporal 

○ Temporal Variation: How do species occurrences change over time? Are there 

sufficient observations over different time periods? 

○ Comparative Stability: How do these occurrences compare to a higher taxonomic 

level over time? 

● Taxonomical 

○ Prevalence or Abundance: How do species prevalence or abundance affect 

multispecies indices? Are certain species overrepresented? 

 

To implement this, we propose two functionalities. Section 5 provides a more general  description 

of software development and implementation. 

 

1. Measuring Data Cube Robustness 

○ Function(s) that measure the applicability of a dataset in general, or related to a 

certain biodiversity indicator 

i. Input: occurrence cube of class ‘processed_cube’, indicator function when 

using leave-one-out cross-validation (see further) 

ii. Output: summary with warning/flag system (e.g. with colours) and a short 

description 

 

These measures support data exploration and will be categorized into different robustness levels: 

category  

Robustness summary  

Note  

Important note  

Very important note  

 

Preliminary rules are provided in Annex 8.1. Further refinements will be made in parallel with the 

results from data quality assessments within the B3 project (T4.5). 
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2. Filtering Data Cube Observations 

○ Function(s) that filter a dataset based on default or custom rules 

i. Input: occurrence cube of class ‘processed_cube’ 

ii. Output: filtered occurrence cube 

 

To enhance data exploration, this filtering function allows users to refine datacubes using 

robustness criteria. Default settings will be provided—for instance, trend analysis over multiple 

years is unlikely to be meaningful for a bird observed only once in a single year. Such rare 

sightings may be anomalies rather than a true trend for that species in that region. 

 

3.2 Measures for Species Robustness 

For indicators developed across multiple species, we developed a cross-validation (CV) technique 

to assess how each species impacts the overall calculation of an indicator. It is a leave-one-out 

method, where each species is systematically excluded from the dataset and the indicator is 

recalculated without that species. We call this method leave-one-species-out cross-validation 

(LOSO-CV), which provides insights into the robustness of the indicator and helps guide users in 

interpreting results, particularly when specific species might disproportionately affect the 

outcomes. 

 

1. Original Sample Data:  

● The initial set of data points, where there are  different species and  total sample size 

across all species.  corresponds to the number of cells in a data cube or the number of 

rows in tabular format. 

 

2. Statistic of Interest:  

● The parameter or statistic being estimated, such as the mean , variance , or a 

biodiversity indicator. Let  denote the estimated value of  calculated from the complete 

dataset . 

 

3. Cross-Validation (CV) Sample:  

● The full dataset  excluding all occurrences belonging to species . This subset is used 

to investigate the influence of species  on the estimated statistic . 

 

4. CV Estimate for Species :  

● The value of the statistic of interest calculated from , which excludes species . For 

example, if  is the sample mean, . 
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5. Error Measures: 

Error:  

● The difference between the statistic estimated without species  ( ) and the statistic 

calculated on the complete dataset ( ). 

 

 
 

Relative Error:   

● The absolute error, normalised by the true estimate  and a small error term  to 

avoid division by zero. 

 

 
 

7. Summary Measures: 

Mean Relative Error:  

● The average of the relative errors over all species. 

 

 
Mean Squared Error:  

● The average of the squared errors. 

 

 
 

Root Mean Squared Error:  

● The square root of the MSE: 

 

 
 

As an example, we calculated Pielou's Evenness using the b3gbi package v0.2.2 (function 

b3gbi::pielou_evenness_ts()). Evenness is a useful indicator because the influence of a 

single species can make a big difference to the indicator value. Higher evenness values indicate 

a more balanced community (a value of 1 means that all species are equally abundant), while low 

values indicate a more unbalanced community (a value of 0 means that one species dominates 

completely). The influence of a species on this indicator is therefore related to the number of 

observations for that species compared to the number of observations for each of the other 

species (Fig. 1A). Figure 1B shows the LOSO-CV error for each species each year. An error value 

of 0.2 for species 1341976 (= GBIF key for European honey bee, Apis mellifera Linnaeus, 1758), 

for example, means that the indicator value is 0.2 higher without that species than when the 

species is included. 
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A. 

 
B. 

 
Figure 1: Visualisation of the influence of each species on the calculation of the indicator. The 

numbers indicate the GBIF species keys. A: Number of occurrences for each species in the dataset 

per year. B: LOSO-CV error for each species each year. Note that the species key in B means that 

the species was not included (see the report text for explanation). 

 

When one dominant species is present, removal of that species increases the evenness value 

(positive error value for that species), e.g., species 1341976 in 2011, 2012, 2013, 2015, 2017, 

2018 and 2020. This is because when the dominant species is removed, the community becomes 

more balanced. When two equally dominant species are present, removing each of the species 

decreases the evenness value (negative error value for that species), e.g., species 1341976 and 

4525777 (red-belted clearwing, Synanthedon myopaeformis (Borkhausen, 1789)) in 2014. This 

is because when one of the two species is removed, the other becomes the only dominant species 
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and evenness decreases. When there are multiple dominant species present, removing each of 

the species has only a small effect on the evenness value, e.g., in 2016 and 2019. This is because 

when one of the species is removed, there are still other dominant species and evenness does 

not change much. 

 

This example demonstrates that the LOSO-CV method functions as expected. It serves as an 

exploratory tool for assessing the influence of individual species on indicator calculations. In 2012, 

we observe a notably low evenness of 0.069, indicating the dominance of a single species. But 

which species is responsible? And is this expected? One possible explanation is dataset bias—

some datasets included in the cube may disproportionately focus on certain species (see further). 

However, this does not imply that species with large errors should be excluded. In this case, 

species 1341976 had significantly more observations in 2012 than others, making the low 

evenness value expected. Whether this is problematic depends on the research question. 

 

For context, the dominant species, 1341976, is the European honey bee (Apis mellifera). One 

might expect honeybees to be less dominant compared to smaller, less conspicuous insects like 

ants or aphids. However, A. mellifera appears to dominate the dataset, likely because it is easier 

to spot, identify, and study. This highlights a clear bias and a lack of robustness in the data cube. 

 

While LOSO-CV is a valuable approach, other leave-one-out methods could also provide 

important insights. For example, “leave-one-dataset-out cross-validation” could help assess how 

individual datasets influence indicator calculations. This would be particularly useful for identifying 

biases introduced by certain data sources (Ferro & Flick, 2015). Combining LOSO-CV with similar 

techniques can provide a more comprehensive understanding of data reliability and robustness 

in biodiversity assessments.  
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4 Indicator Variability and Robustness 

4.1 Measures for Indicator Uncertainty 

To quantify indicator uncertainty, we followed the guidelines of (Rowland et al., 2021) that advise 

the selection of an appropriate approach to present uncertainty in biodiversity indicators (Fig. 2). 

On the basis of these, we propose the calculation of confidence intervals for indicators calculated 

from occurrence cubes based on the bootstrap resampling method (hereafter, bootstrapping). 

 

 
 

Figure 2: Figure 1 from Rowland et al. (2021): “Decision tree for presenting data variability or 

uncertainty in biodiversity indicators with interval methods. This list of approaches is not 

exhaustive.” 

 

Bootstrapping provides a flexible, non-parametric approach to estimate the variability of indicators 

without relying on strong assumptions about the underlying data distribution (Davison & Hinkley, 

1997; Efron & Tibshirani, 1994). This flexibility is meaningful for this research, as both occurrence 

cube datasets and the derived indicators can be very distinct in nature (Dixon, 2001). Each 

occurrence cube has a unique spatial, temporal, taxonomic, … scope, and spatial and temporal 

indicators are developed related to prevalence, abundance, phylogenetic diversity, impact of alien 

species, etc. (Breugelmans et al., 2024; Dove, 2024; Yahaya & Kumschick, 2025). In 

bootstrapping, the dataset is resampled multiple times with replacement. For each resampled 

dataset, the statistic of interest, e.g. a biodiversity indicator, is calculated. Based on the 
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distribution of these indicator values, we get an idea about indicator uncertainty, e.g. via 

calculation of confidence intervals (Fig. 3). 

 

1. Original Sample Data:  

● The initial set of data points. Here,  is the sample size. This corresponds to the number 

of cells in a data cube or the number of rows in tabular format. 

 

2. Statistic of Interest:  

● The parameter or statistic being estimated, such as the mean , variance , or a 

biodiversity indicator. Let  denote the estimated value of  calculated from the dataset 

. 

 

3. Bootstrap Sample:  

● A sample of size  drawn with replacement from the original sample . Each  is drawn 

independently from . 

● A total of  bootstrap samples are drawn from the original data. Common choices for  

are 1000 or 10,000 to ensure a good approximation of the distribution of the bootstrap 

replications (see further). 

 

4. Bootstrap Replication:  

● The value of the statistic of interest calculated from the -th bootstrap sample . For 

example, if  is the sample mean, . 

 

5. Bootstrap statistics 

Bootstrap Estimate of the Statistic:  

● The average of the bootstrap replications: 

 

 
 

Bootstrap Bias:  

● This bias indicates how much the bootstrap estimate deviates from the original sample 

estimate. It is calculated as the difference between the average bootstrap estimate and 

the original estimate: 

 

 
 

Bootstrap Standard Error:  

● The standard deviation of the bootstrap replications, which estimates the variability of the 

statistic. 
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Bootstrap Confidence Interval:  

● Confidence intervals (CIs) for the statistic of interest can be constructed using the 

bootstrap distribution of . Several methods are explained in more detail below. 

 

 
 

Figure 3: Use of bootstrapping for the quantification of indicator uncertainty. See the report text for 

an explanation of the mathematical notation. 
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Bootstrapping can be used to assess the uncertainty about an indicator estimate via confidence 

intervals (Davison & Hinkley, 1997; Dixon, 2001; Rowland et al., 2021). We consider four different 

types of intervals (with confidence level ). The choice for confidence interval types and their 

calculation is in line with the boot package in R (Canty & Ripley, 1999) to ensure smooth 

implementation in software (see further). They are based on the definitions provided by Davison 

& Hinkley (1997, Chapter 5) (see also DiCiccio & Efron, 1996; Efron, 1987). 

 

1. Normal: Assumes the bootstrap distribution of the statistic is approximately normal 

 

 
 

where  is the  quantile of the standard normal distribution. 

 

2. Basic: Centers the interval using percentiles 

 

 
 

where  and  are the  and  percentiles of the bootstrap distribution, 

respectively. 

 

 

3. Percentile: Uses the percentiles of the bootstrap distribution. 

 

 
 

where  and  are the  and  percentiles of the bootstrap distribution, 

respectively. 

 

 

4. Bias-Corrected and Accelerated (BCa): Adjusts for bias and acceleration 

 

Bias refers to the systematic difference between the observed statistic from the original dataset 

and the center of the bootstrap distribution of the statistic as introduced above. The bias correction 

term is calculated as follows: 

 

 
 

where  is the counting operator and  the inverse cumulative density function of the standard 

normal distribution. 
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Acceleration quantifies how sensitive the variability of the statistic is to changes in the data.  

● : The statistic's variability does not depend on the data (e.g., symmetric distribution) 

● : Small changes in the data have a large effect on the statistic's variability (e.g., 

positive skew) 

● : Small changes in the data have a smaller effect on the statistic's variability (e.g., 

negative skew). 

 

The acceleration term is calculated as follows: 

 

 
 

where  denotes the influence of data point  on the estimation of .  can be estimated using 

jackknifing. Examples are (1) the negative jackknife: , and (2) the positive 

jackknife  (Frangos & Schucany, 1990). Here,  is the estimated value 

leaving out the ’th data point . The boot package also offers infinitesimal jackknife and 

regression estimation (Canty & Ripley, 1999). The different jackknife options can be explored in 

the future. 

 

The bias and acceleration estimates are then used to calculate adjusted percentiles. 

 

,  

 

So, we get 

 

 
 

4.2 Comparison of Interval Types 

We compared all four interval types mentioned above in the case of three different general 

biodiversity indicators ( ). The following indicators were selected: 

 

1. Mean Number of Observations per Grid Cell 

○ Custom function 

○ Calculates the mean number of observations per grid cell per year 

○ Positive real number 

2. Pielou's Evenness 

○ As calculated by the b3gbi package v0.2.2: b3gbi::pielou_evenness_ts() 

○ Calculates the evenness per year 

○ Real number between 0 and 1 

  

https://www.codecogs.com/eqnedit.php?latex=a%3D0#0
https://www.codecogs.com/eqnedit.php?latex=a%3E0#0
https://www.codecogs.com/eqnedit.php?latex=a%3C0#0
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3. Observed Species Richness 

○ As calculated by the b3gbi package v0.2.2: b3gbi::obs_richness_ts() 

○ Calculates the number of species per year 

○ Positive integer 

 

(1) The Mean Number of Observations per Grid Cell show very low bootstrap bias and more or 

less symmetrical bootstrap distributions (Fig. 4A). Therefore, the four interval types are similar. 

(2) Pielou's Evenness shows moderate bias and a strong skewness in the bootstrap distributions 

unless values are around 0.5 (Fig. 4B). Therefore, the symmetric intervals, normal and basic, are 

not recommended. Truncation or the use of transformation functions (in this case logit and expit) 

could allow these intervals to be limited to 0-1 range of evenness. These options will be 

considered in the future. The percentile interval can be used for asymmetrical distributions, but 

does not take bias into account. Therefore, the BCa interval is recommended in this case. (3) The 

Observed Species Richness shows high bias and more or less symmetrical bootstrap distributions 

(Fig. 4C). The BCa interval could not be calculated when all bootstrap replications are lower than 

the original estimate (see formula ). None of the calculated intervals cover the original estimate. 

This is the case because bootstrap resampling will never introduce new species (Dixon, 2001, p. 

287). Alternative approaches should be used in this case.  For example, the vegan (Oskanen et 

al., 2024) and iNEXT (Hsieh et al., 2016) packages in R offer alternative species richness indices 

with uncertainty calculation. Some of those are already implemented for occurrence cubes in a 

newer version of b3gbi (Dove, 2024, v0.4.0). 

 

Because of the wide range of indicator types, we recommend the use of percentile or BCa 

intervals, because they have no strong assumptions regarding the bootstrap distribution. The BCa 

interval is recommended as it accounts for bias and skewness. However, due to the jackknife 

estimation of the acceleration parameter, the calculation time is significantly longer. The use of 

the normal and basic confidence intervals is not recommended, but could be used in combination 

with truncations or transformations. The assumption of normality can be checked by making a Q-

Q plot of the bootstrap replications (Davison & Hinkley, 1997). An overview of the 

recommendations is provided in Table 1. This is not an exhaustive review of the topic, but based 

on existing literature and our preliminary results, these recommendations provide a useful starting 

point for selecting appropriate interval types.  
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A. 

 
B. 

 
C. 

 
 

Figure 4: Comparison of different interval types for three different indicators. The violin plots show 

the bootstrap distributions. The estimate refers to the original estimate . A: Mean Number of 

Observations per Grid Cell. B: Pielou’s Evenness. C: Observed Species Richness. 
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Table 1: Overview of the advantages and disadvantages between the considered 

confidence interval types. 

 

Interval type Advantages Disadvantages References 

Normal - Simplicity 

- Understanding of bootstrap 

and CI theory 

- Assumes bootstrap 

distribution is normal 

- Often, transformation 

needed for more accurate 

results 

- Erratic coverage error in 

practise 

(Davison & Hinkley, 1997, 

Chapter 5; Efron & 

Tibshirani, 1994, Chapter 

13; Hesterberg, 2015) 

Basic - Simplicity 

- Understanding of bootstrap 

and CI theory 

- Assumes symmetric 

bootstrap distribution 

- Typically substantial 
coverage error 

(Carpenter & Bithell, 2000; 

Davison & Hinkley, 1997, 

Chapter 5; Hesterberg, 

2015) 

Percentile - Simplicity 

- No assumptions about 

bootstrap distribution 

- Implicitly uses the 

existence of a good 

transformation 

- Does not take bias into 

account 

- Substantial coverage 

error if the distribution is 
not nearly symmetric 

(Carpenter & Bithell, 2000; 

Davison & Hinkley, 1997, 

Chapter 5; Efron & 

Tibshirani, 1994, Chapter 

13) 

BCa - No assumptions about 

bootstrap distribution 

- Implicitly uses the 

existence of a good 

transformation 

- Adjusts for bias 

- Adjusts for skewness 

- Smaller coverage error than 

the other methods 

- Involved calculation of 

acceleration parameter  

- Unstable coverage when  

is small ( ) and for 

small sample sizes 

(Carpenter & Bithell, 2000; 

Davison & Hinkley, 1997, 

Chapter 5; Dixon, 2001; 

Efron & Tibshirani, 1994, 

Chapter 14) 

 

4.3 Interpretation of Indicator Uncertainty 

In interpreting indicators, too much emphasis is sometimes placed on relatively small differences 

in indicator values. Small differences are to be expected due to natural variability and limited 

sample size. To avoid over-interpretation of changes in indicator values, it is important to include 

the confidence intervals around the calculated values in the final evaluation. This section presents 

a general approach to interpreting effects. The aim is to provide a general framework for 

interpreting changes (increases or decreases) for the very different indicators developed and 

implemented under the B3 project. 

 

The approach is presented below using Pielou's evenness index with the BCa intervals from the 

previous subsection. To create a more continuous representation of change over time, we can 

apply LOESS (Locally Estimated Scatterplot Smoothing) to the estimates and confidence limits. 

This smoothing technique fits local regressions across subsets of the data, producing a flexible 

trend line that helps visualize broader patterns while retaining important details. However, for the 

example of Pielou’s Evenness, this figure does not provide a clear handle for making a statement 
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about whether the indicator value is increasing or decreasing (Fig. 5). An alternative option is 

using a fan plot based on the standard error of the estimates. This is for example implemented in 

the effectclass package (Onkelinx, 2023) and will be further developed in the future. 

 

 
 
Figure 5: Trend visualisation using LOESS smoothers based on the estimates and the confidence 

limits. 

 

Interpretation of the results can be done using effect classification based on the effectclass 

package. If the confidence interval is above/under the reference line, we call it an 

increase/decrease. Threshold values can be provided to make a distinction between stable 

(confidence interval covering the reference line) and uncertain trends (confidence interval 

covering the reference line and at least one of the threshold lines). The thresholds can also be 

used to classify even further (Table 2, Fig. 6). Threshold values should be manually selected 

around the reference line at a level deemed negligible, allowing trends within this range to be 

classified as ‘no effect’. 

 

Table 2: Rules for effect classification to aid the interpretation of indicator effects/trends (Onkelinx, 

2023). Continues on the next page. 

 

Symbol Fine effect/trend Coarse effect/trend Rule 

++ 
strong positive 

effect/strong increase 

positive effect/ 

increase 

confidence interval above the 

upper threshold 

+ 
positive effect/ 

increase 

positive effect/ 

increase 

confidence interval above 

reference and contains the upper 

threshold 

+~ 
moderate positive 

effect/ moderate 

increase 

positive effect/ 

increase 

confidence interval between 

reference and the upper threshold 

 

 



Quantify indicator robustness 

 

 

19 

 

Table 2 continued 

Symbol Fine effect/trend Coarse effect/trend Rule 

~ no effect/stable no effect/stable 
confidence interval between 

thresholds and contains reference 

-~ 
moderate negative 

effect/moderate 

decrease 

negative effect/ 

decrease 

confidence interval between 

reference and the lower threshold 

- 
negative effect/ 

decrease 

negative effect/ 

decrease 

confidence interval below 

reference and contains the lower 

threshold 

-- 
strong negative 

effect/strong decrease 

negative effect/ 

decrease 

confidence interval below the 

lower threshold 

?+ 
potential positive 

effect/potential 

increase 

unknown effect/ 

unknown 

confidence interval contains 

reference and the upper threshold 

?- 
potential negative 

effect/potential 

decrease 

unknown effect/ 

unknown 

confidence interval contains 

reference and the lower threshold 

? 
unknown effect/ 

unknown 

unknown effect/ 

unknown 

confidence interval contains the 

lower and upper threshold 

 

We can compare these to a certain constant. For example, we are interested to see whether 

evenness is significantly different from 0.5, where we choose arbitrary thresholds of 0.1 (Fig. 7A). 

We see that evenness is significantly lower than 0.5 in 2012, 2015, 2017, 2018 and 2020. In 2012, 

2017, 2018 and 2020, this is a strong difference (under the lower threshold). In all other cases, 

there is an uncertain trend. 

 

Perhaps more interesting is the comparison with a reference group. In the case of a time series, 

we might want to compare indicator values with the value for the last year (or any reference period, 

see further). For this, we need to bootstrap again. This time over the difference between indicator 

functions: 

 

 

1. Resample the dataset with replacement 

2. Calculate the indicator for each period (e.g., year) 

3. Take the difference between the indicator values for each non-reference period with the 

indicator value for the reference period 

4. Repeat steps 1-3  times 

 

Steps 1, 2 and 4 are the same as before. The difference is that we now get bootstrap replicate 

distributions for a difference between indicator values (Step 3). From these distributions, we can 

again calculate the confidence intervals as defined previously. The reference value for effect 

classification is now typically equal to 0 (no difference with the reference year 2020). We choose 

arbitrary thresholds of 0.2 (Fig. 7B). We see that evenness was significantly higher in 2014, 2016, 

and 2019 compared to 2020. In all other cases, there is an uncertain trend. 
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A. 

 
B. 

 
 

Figure 6: Visualisation of effect classification. A: Fine classification. B: Coarse classification. 

Figures from Onkelinx (2023): https://inbo.github.io/effectclass/articles/visualisation.html. 

 

  

https://inbo.github.io/effectclass/articles/visualisation.html


Quantify indicator robustness 

 

 

21 

 

A. 

 
B. 

 
 

Figure 7: Visualisation and interpretation for the percentile intervals of Pielou’s Evenness. A: 

Comparison with a constant (0.5 ± 0.1). B: Comparison with a reference period (2020: 0 ± 0.2). 

 

Note that the choice of the reference year should be well considered. Keep in mind which 

comparisons should be made, and what the motivation is behind the reference period. A high or 

low value in the reference period relative to other periods, e.g. an exceptional bad or good year, 

can affect the magnitude and direction of the calculated differences. Whether this should be 

avoided or not, depends on the motivation behind the choice and the research question. A 

reference period can be determined by legislation, or by the start of a monitoring campaign. A 

specific research question can determine the periods that need to be compared. Furthermore, the 

variability of the estimate of reference period affects the width of confidence intervals for the 

differences. A more variable reference period will propagate greater uncertainty. In the case of 

GBIF data, more data will be available in recent years than in earlier years. If this is the case, it 

could make sense to select the last period as a reference period as done in our example above. 

In a way, this also avoids the arbitrariness of choice for the reference period. You compare 

previous situations with the current situation (last year), where you could repeat this comparison 
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annually, for example. Note that it will require some caution/adaptation for the interpretation of 

the trend classification in time-series where 'increase' suggests an increase with time and not 

backwards. Finally, when comparing multiple indicators, we recommend using a consistent 

reference period to maintain comparability. 

 

In the case of the BCa interval, if we compare with a reference group, we need to estimate the 

acceleration using jackknifing in a different way than before. Consider , where  is the 

estimate for the indicator value of a non-reference period (sample size is ) and  is the estimate 

for the reference period (sample size is ). The acceleration term is now calculated as follows: 

 

 
 

Remember  can be calculated using the negative jackknife: , or the positive 

jackknife  . Such that 

 

  for   , and 

  for   

 

4.4 Calculation and Interpretation of Uncertainty for Spatial Indicators 

So far we only focussed on temporal indicators, e.g. per year, but indicators are also calculated 

over a spatial extent (Fig. 8). The methods discussed above have not been tested on spatial 

indicators. However, bootstrapping should be analogous to the examples above. Instead of 

grouping by year, we can group by grid cell code (or by species and year, or species and grid cell 

code for species-specific indicators). The confidence intervals can then be derived as before. The 

main difference will be visualisation of uncertainty and the way we can use effect classification. 

 

 
 
Figure 8: Spatial indicator (Observed Species Richness) for the mammals of Denmark. Figure from 

Dove (2024): https://b-cubed-eu.github.io/b3gbi/articles/b3gbi.html.  

  

https://b-cubed-eu.github.io/b3gbi/articles/b3gbi.html
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To visualise the uncertainty from confidence intervals, we can map the CI width, the bootstrap 

standard error or a relative measure like the CI width divided by two times the estimate, where 

larger values indicate greater uncertainty. Alternatively, we can create separate maps for the 

lower and upper CI bounds. For visualising both the estimate and uncertainty in a single map, we 

can use circles within the grid cells that vary in blur (Figs 9A-B, best w.r.t. user intuitiveness), or 

transparency (Figs 9C-D, best w.r.t. user performance ~ accuracy, speed) (Kinkeldey et al., 2014; 

MacEachren et al., 2005, 2012). 

 

A. B. 

  

C. D. 

  

 

Figure 9: Visualisation of indicator estimate and uncertainty within a spatial grid. A: Blur. B: Blur 

and size. C: Transparency. D: Transparency and size. Created using R packages ggplot2 (Wickham, 

2016), dplyr (Wickham et al., 2023), sf (Pebesma, 2018) and ggblur (mikefc, 2025) (code provided in 

Langeraert et al., 2025, v1.4.0).  
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For effect classification, we can use the same classification technique as before, where we can 

compare with a constant value (mean or reference value). For visualisation, the grid cells can be 

coloured according to the effect. Comparison with a reference group (in this case a reference grid 

cell) may be less useful than for temporal indicators, but is possible in a similar way. 

 

5 Software Implementation 

The code for calculating the robustness measures, indicator uncertainty via bootstrapping, and 

effect classification will be bundled in an R package called dubicube (Fig. 10) (Langeraert & Van 

Daele, 2025). The functions in this package can be used for exploratory analyses (Section 3) as 

well as uncertainty calculation and interpretation (Section 4). It can also serve as a dependency 

for packages calculating indicators from occurrence cubes, e.g. to retrieve confidence intervals. 

 

 
 

Figure 10: The logo of the dubicube R package. 

 

We plan to explore the use of the boot package (Canty & Ripley, 1999) for implementing 

bootstrapping functionalities in the dubicube package. In this way, we will ensure correct 

programming of bootstrap resampling and confidence level calculation. However, preliminary 

implementation tests have already shown that modifications to the original boot code will be 

required to make it compatible with the structure and specific requirements of occurrence cubes. 

This will likely involve adapting or extending the functionality to handle cube-based data 

effectively. 

 

Additionally, since bootstrapping and jackknife methods can be computationally intensive, we will 

need to focus on optimising the code for performance. This includes investigating the use of 

parallel processing options, which could significantly reduce computational time and make the 

implementation more efficient for large datasets. Some options are also provided by the boot 

package. 
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8 Annex 

8.1 Preliminary Rules for Data Cube Robustness 

8.1.1 Robustness measures along basic dimensions 

8.1.1.1 Temporal 

Minimal number of time points 

The absolute number of time points is largely the responsibility of the user during the occurrence 

cube specification. The number of time points is not very important for indicator calculation but 

could be flagged as a note if only a single time point is available, since this might be a mistake 

from the user. 

 

category  

> 1 time points  

1 time point  

-  

-  

 

Missing time points  

Percentage of missing time points over the whole time period (first - last) of the data cube for each 

species. 

 

category  

< 10%   

> 10%  

> 25%  

> 50%  
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8.1.1.2 Spatial 

Spatial range 

Number of grid cells with occurrences as a percentage of the total number of grid cells for all 

species and each individual species. 

 

category  

> 50%  

-  

-  

< 5%  

 

Overall spatial clustering 

While ecological data are expected to have a considerable degree of structure, extreme values 

for clustering or dispersion may indicate underlying problems with the dataset. The degree of 

spatial clustering of the data in the datacube will be investigated using spatial autocorrelation 

analysis. High spatial autocorrelation means that neighbouring cells tend to have similar values, 

whereas low spatial autocorrelation means that values are very different when moving from one 

cell to another.  

 

Moran's I will be used to summarise spatial autocorrelation at varying lag distances for a 

geographical area. It indicates whether the data are dispersed, random or clustered with values 

between -1 and 1.  

 

category  

-0.5 < x < 0.8  

x < -0.5 or x > 0.8   

x < -0.7 or x > 0.9   

x < -0.8 or x > 0.95  

 

Local indicators for spatial association 

To gain more insight into where local spatial patterns occur, Local Indicators of Spatial Association 

(LISA) will be used. They can be used to identify areas with statistically significant spatial patterns, 

unusual high or low values, detect spatial outliers with values significantly different from their 

surroundings and local variations. 

 

Several indicators are possible, but at least the most common Local Moran’s I and Geary ratio 

will be implemented. 
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8.1.1.3 Taxonomical 

Minimal number of taxa 

The user specifies a species group from which to make an occurrence cube. It is possible to get 

a cube with less taxa (e.g. species) than expected because data for only a few taxa in this group 

are available on GBIF. The number of taxa may or may not be important for indicator calculation, 

depending on the indicator function. 

 

category  

> 5 taxa  

3-5 taxa  

2-3 taxa  

1 taxon  

 

8.1.1.4 Observations 

Minimal number of observations 

Flag when not enough observations. 

 

category  

> 40 observations  

30-40 observations  

20-30 observations  

< 20 observations  
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8.1.1.5 Minimal coordinate uncertainty 

Minimal coordinate uncertainty 

The minimal coordinate uncertainty in meters should not be (much?) larger than the resolution of 

the grid cell. 

 

category  

All minimal coordinate uncertainty smaller than resolution  

1-5 rows with minimal coordinate uncertainty larger than resolution  

5-10 rows with minimal coordinate uncertainty larger than resolution  

> 20 rows with minimal coordinate uncertainty larger than resolution  

 

8.1.2 Robustness measures along interactive dimensions 

8.1.2.1 Temporal + Spatial 

Spatial similarity for consecutive time steps 

The spatial distribution of occurrences naturally fluctuates, but abrupt changes may indicate 

underlying issues in the dataset. To assess spatial changes over time, we calculate the similarity 

of presence/absence maps (where presence is defined as occurrences > 0, and absence as no 

occurrences) between successive time points. This is measured using the Jaccard similarity 

index: 

Jaccard similarity = (number of cells with occurrences in both time points) / (number of cells with 

occurrences in both sets) 

The index ranges from 0 (no similarity) to 1 (complete similarity). It can be computed for the entire 

data cube or for individual species. Results can be visualized as a time series with (time period - 

1) steps or summarized as the mean similarity over the full time period. 

category  

> 0.8   

0.5 > x < 0.8  

> 0.2 x < 0.5  

< 0.2  
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8.1.2.2 Temporal + Taxonomical 

Minimal number of taxa per time point 

The user specifies a species group from which to make an occurrence cube. It is possible to get 

a cube with less taxa (e.g. species) than expected because data for only a few taxa in this group 

is available on GBIF. The number of taxa may or may not be important for indicator calculation 

depending on the indicator function. 

 

category  

> 5 taxa  

3-5 taxa  

2-3 taxa  

1 taxon  

 

Relative difference of indicator value per time point 

Via leave-one-species-out cross-validation, we can calculate the relative difference between the 

indicator value calculated with and without each taxon. If the relative difference is too large for 

one or more taxa, they can be flagged. We can take the median (or mean?) per time point. If the 

median relative difference is too large, this time point can be flagged. 

 

category  

< 10 %  

10-50 %  

50-100 %  

> 100 %  
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8.1.2.3 Temporal + Observations 

Minimal number of observations per time point 

Flag when not enough observations per time point. 

 

category  

> 30 observations  

20-30 observations  

10-20 observations  

< 10 observations  

 

Relative difference of number of observations 

We can calculate the relative difference between the number of observations per time point and 

the median number of observations over all time points. If the relative difference is too large for 

one or more time points, they can be flagged. 

 

category  

< 10 %  

10-50 %  

50-100 %  

> 100 %  

 

8.1.2.4 Taxonomical + Observations 

Minimal number of observations per taxon 

Flag when not enough observations per taxon. 

 

category  

> 30 observations  

20-30 observations  

10-20 observations  

< 10 observations  
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Relative difference of number of observations 

We can calculate the relative difference between the number of observations per taxon and the 

median number of observations over all taxa. If the relative difference is too large for one or more 

taxa, they can be flagged. 

 

category  

< 10 %  

10-50 %  

50-100 %  

> 100 %  

 

 


