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Key takeaway messages 
●​ The b3gbi R package provides standardised, automated, reproducible workflows for 

biodiversity indicator calculation. 

●​ It computes a range of spatial and temporal biodiversity indicators from GBIF data 
cubes.  

●​ Robust uncertainty estimation is integrated for many indicators. 

●​ Indicator results are visualised in customisable maps and time series. 

 

Executive summary 
This report details the implementation workflow of key biodiversity indicators within the b3gbi R 
package, developed as part of the EU-funded B3 project. The B3 project aims to improve 
biodiversity monitoring by integrating diverse biodiversity data, including from citizen science 
initiatives, into standardised data cubes. This innovative approach underpins the development 
of automated workflows and tools, such as b3gbi, which calculate robust biodiversity indicators 
and models to support evidence-based policy making and address critical data gaps for global 
and European conservation efforts. 
 
Biodiversity indicators are fundamental to effective conservation, policy assessment, and 
understanding ecological trends, serving various stakeholders from governments and NGOs to 
researchers and consultancies. Despite their critical role, their calculation is often hindered by 
the fragmented, incomplete, and biased nature of available biodiversity data. 
 
The B3 project directly addresses this challenge by providing standardised, publicly accessible, 
and reproducible workflows for calculating general biodiversity indicators and models from data 
cubes. The b3gbi R package generalizes these methodologies to encompass a diverse set of 
common biodiversity indicators applicable across any taxon and/or region. 
 
This document outlines the operational workflow of the implemented indicators, detailing the 
processes from GBIF occurrence cube ingestion to the generation of robust indicator values and 
output of maps and time series. It describes the data preparation, specific calculation logic for 
each indicator, and output formats. 
 
The b3gbi package facilitates the transformation of complex biodiversity data into actionable 
information, thereby strengthening the science-policy interface and contributing to a more 
comprehensive understanding and effective management of global biodiversity. 
 

Non-technical summary 
The b3gbi R package is a computational tool developed to provide robust and consistent 
insights into global biodiversity trends. It addresses the challenge of analysing vast amounts of 
species occurrence data, such as those compiled by the Global Biodiversity Information Facility 
(GBIF), in an efficient and consistent manner. 
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The package's workflow begins by utilizing structured, pre-processed biodiversity data, often 
organized as 'data cubes' that efficiently store information across different locations and time 
periods. From these data cubes, b3gbi automatically computes various biodiversity indicators – 
these are standardised measures that describe aspects like species richness, rarity, or how 
diversity changes over time. A critical part of its output is the quantification of uncertainty, which 
helps users understand the reliability of these calculated measures. All results are then 
presented through clear and customizable maps and time series visualisations. 

Developed through the EU-funded B3 project, b3gbi aims to enhance the accessibility, 
reproducibility, and trustworthiness of biodiversity data analysis. This, in turn, supports informed 
decision-making in conservation, environmental monitoring, and ecological research, 
contributing to more effective strategies for protecting biodiversity. 

 

List of abbreviations 
B3 

b3gbi 

CBD 

CI 

CRS 

EEA 

EQDGC 

EU 

GBIF 

MGRS 

RAM 

ts 

 

Biodiversity Building Blocks for Policy 

B3 General Biodiversity Indicators 

Convention on Biological Diversity 

Confidence Interval 

Coordinate Reference System 

European Environment Agency 

Extended Quarter-Degree Grid Cells 

European Union 

Global Biodiversity Information Facility 

Military Grid Reference System 

Random Access Memory 

Time Series 
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1.​ Introduction 
Biodiversity indicators play a crucial role in monitoring biodiversity trends, assessing progress 
towards conservation goals, and informing policy decisions (Buckland et al., 2012; Jones et al., 
2011; Nicholson et al., 2012). International frameworks, such as the Convention on Biological 
Diversity (CBD) Global Biodiversity Framework and the EU Biodiversity Strategy for 2030, rely 
on such metrics to measure progress (Buchanan et al., 2020; Viti et al., 2024). The vast 
availability of biodiversity occurrence data, particularly from platforms like the Global Biodiversity 
Information Facility (GBIF), offers immense potential for deriving these critical indicators. 
However, transforming this extensive and often heterogeneous data into standardised, 
reproducible, and robust indicators presents significant challenges due to missing or inadequate 
data, inherent biases, and a lack of standardisation (Chandler et al., 2017; Proença et al., 2017; 
Troia and McManamay, 2016; Troudet et al., 2017; Turak et al., 2017). Developing efficient, 
scalable, standardised, accessible, and reproducible workflows is therefore paramount. 
 
The b3gbi R package was developed to directly address these multifaceted challenges. As part 
of the EU-funded B3 project (Biodiversity Building Blocks for Policy), its core objective is to 
provide automated, standardised, and reproducible open-source workflows for biodiversity 
indicator calculation. b3gbi operates on pre-processed, aggregated biodiversity data cubes 
(freely available from GBIF), an efficient and structured format for storing biodiversity 
information (Desmet et al., 2023). b3gbi implements automated workflows to compute a 
diverse range of spatial and temporal biodiversity indicators, including measures like species 
richness, rarity, and turnover. It includes integrated uncertainty estimation using robust 
bootstrapping methods. Complementing its analytical capabilities, b3gbi also includes flexible 
visualisation tools that generate customisable maps and time series plots, making complex 
biodiversity trends accessible and interpretable for diverse audiences. 
 
This report details the operational workflow of the biodiversity indicators (Fig. 1) implemented 
within the b3gbi R package. It outlines the step-by-step process, including the initial ingestion 
of GBIF occurrence cubes, the subsequent data transformation, the integration of map data for 
geographical contextualization, the computational logic applied to calculate indicators and 
confidence intervals, and the ultimate generation of maps or time series. By elucidating these 
workflows, this document serves to clarify the methodology underpinning b3gbi, contributing to 
its transparency and reproducibility as a tool for robust biodiversity assessment. 
 

2.​ Technical Environment and Setup 
The b3gbi R package is designed to operate within a standard R version 3.5.0 or later 
environment. It relies on a comprehensive set of dependencies (see Tables A1 and A2 in Annex 
for a complete list), automatically managed upon installation, to ensure its functionality for 
processing GBIF occurrence cubes and calculating biodiversity indicators.  
 
Computational resource needs naturally vary with data size and indicator complexity. If using 
b3gbi to process large occurrence cubes, a powerful system with a lot of RAM may help to 
make processing times manageable, especially for the calculation of bootstrapped confidence 
intervals. 
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The b3gbi package can be easily installed from the dedicated B3 R-universe repository by 
executing the following command in an R console: 
 
install.packages("b3gbi", repos = c('<https://b-cubed-eu.r-universe.dev>', 
'<https://cloud.r-project.org>')) 
 
For users interested in accessing the latest development features, the package can also be 
installed directly from its GitHub repository using the remotes package: 
 
# install.packages("remotes")  
remotes::install_github("b-cubed-eu/b3gbi") 
 
 

 
Figure 1. Overview of b3gbi workflow 
 

3.​ Overview 
From a user's perspective, the b3gbi workflow simplifies complex biodiversity data analysis into 
three main steps: Pre-processing, Indicator Synthesis and Validation, and Visualisation 
(Fig. 1). 
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In the initial Pre-processing step, the user invokes the process_cube() function (Table 1) on a 
data cube (provided as either a .csv or data.table). This function thoroughly validates the 
input, checks for data integrity, transforms column structures (e.g., renaming, grid code 
translation), and outputs a robust, package-specific data cube object. This refined object 
includes essential metadata and is consistently structured, ready for subsequent b3gbi 
operations. 
 
The second step, Indicator Synthesis and Validation, begins when the user calls a specific 
indicator wrapper function, such as obs_richness_map() or obs_richness_ts(). These 
wrappers pass user preferences to compute_indicator_workflow() (Table 1), which acts as 
the central orchestrator for the entire indicator calculation process. This robust function 
manages all necessary sub-processes: Geospatial Integration (e.g., temporal filtering to 
user-chosen years, spatial selection from the cube or integration of geographical shapefiles), 
Core Indicator Calculation (dispatching to functions like calc_map() or calc_ts() (Table 1) to 
compute metrics), and Uncertainty Quantification (using calc_ci() (Table 1) to estimate 
confidence intervals). The output is a comprehensive, package-specific indicator object 
containing the calculated metric, aggregated as requested (by grid cell for mapping or by year 
for time series), complete with associated uncertainty values, metadata, and all information 
required for subsequent visualisation. 
 
Finally, the third step, Visualisation, allows users to easily interpret their results. By calling the 
generic plot() function, b3gbi leverages R's S3 dispatch system to automatically direct the 
indicator object to the appropriate internal plotting method based on its type (e.g., plot_map() 
or plot_ts() (Table 1)). This function performs all necessary post-processing to generate a 
publication-ready map or time series plot (see Figs. 2-4 in section 14.4 in the Annex for 
examples). Users can further customize these plots using ggplot2 functionalities and export 
them as desired. 
 
Table 1: Overview of b3gbi main functions 

Function Name Role in 
Workflow Description 

process_cube() Pre-processing 

Data cube import and validation, 
temporal filtering, column renaming, grid 
code translation, structuring of object for 
package use 

compute_indicator_workflow() 
Indicator 
synthesis and 
validation 

Orchestrates indicator calculation 
workflow, managing metadata, temporal 
filtering, geospatial integration, indicator 
calculation, and uncertainty quantification 

calc_map(),  
calc_ts() 

Core indicator 
calculation 

Calculates specified indicator values 
across spatial grid cells or over time, 
leveraging S3 dispatch for different 
indicator types 
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calc_ci() Uncertainty 
quantification 

Calculates confidence intervals for 
specified indicators, leveraging S3 
dispatch for different indicator types 

plot_map(),  
plot_ts(), 
plot_species_map(), 
plot_species_ts() 

Visualisation Generate maps or time series plots of 
calculated indicators 

 
 

4.​ Data Acquisition: GBIF Occurrence Cubes 
The b3gbi R package is specifically designed to operate on GBIF occurrence cubes, which 
serve as its primary input data structure. These cubes represent temporally and spatially 
aggregated biodiversity occurrence records, assigned to a user-selected international grid 
system at a specified resolution, thus providing a standardised format for downstream analytical 
workflows. b3gbi currently supports three of the four available grid systems (Table 2) and all 
available resolutions. Note, however, that processing will be significantly slower at high 
resolutions. 
 
Table 2: Supported grid systems for GBIF data cubes 

Grid System Supported Available Resolutions 

European Environment Agency 
(EEA) Reference Grid Yes 

100 km 
10 km 
1 km 
250 m 
100 m 
25 m 

Extended Quarter Degree Grid 
Cells (EQDGC) Yes 

Level 0: 1 degree 
Level 1: 0.5 degrees 
Level 2: 0.25 degrees 
Level 3: 0.125 degrees 
Level 4: 0.0625 degrees 
Level 5: 0.03125 degrees 
Level 6: 0.015625 degrees 

Military Grid Reference System 
(MGRS) Yes 

6° x 8° (only grid-zone designation) 
100 km 
10 km 
1 km 
100 m 
10 m 
1 m 

Inverse Snyder Equal-Area 
Aperture 3 Hexagon (ISEA3H) 
Discrete Global Grid System 

No n/a 
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4.1.​ Input Data Structure and Formats 
b3gbi expects data cubes as either: 
 

●​ a file path to a delimited text file (.csv) 

●​ an existing R data.frame or tibble object. 

Regardless of the input source, the data cube must contain a set of essential columns 
(occurrences, dates, scientific names, species keys) for indicator calculation. b3gbi internally 
standardises column names and validates that required fields are present to ensure consistency 
across its functions.  
 

4.2.​ Data Ingestion and Pre-processing Workflow 
The central function for ingesting and preparing GBIF occurrence cubes is process_cube(). 
This function performs a series of critical, automated pre-processing steps to ensure the data is 
correctly formatted, validated, and ready for indicator calculation. 
 
Its workflow involves: 
 

●​ Input Validation and Standardization: Ensuring data is in a usable format, 
standardizing column names, and validating the presence and data types of essential 
fields. 

●​ Temporal Data Handling: Automating year extraction from date fields and allowing for 
flexible temporal filtering. 

●​ Grid System Detection and Spatial Coordinate Extraction: Interpreting supported 
grid reference systems to extract spatial coordinates, crucial for spatial analysis and 
visualisation. Custom or no-grid options are also supported (e.g., for temporal analysis of 
simulated outputs from gcube (Langeraert, 2025)). 

●​ Data Cleaning and Structuring: Removing invalid or duplicate records and organizing 
the data for consistent downstream processing. 

●​ Output Object Creation: Encapsulating the processed and validated data into a custom 
S3 object (sim_cube or processed_cube) tailored for b3gbi's subsequent workflow 
steps. 

 

5.​ Workflow for Biodiversity Indicator Calculation 
The calculation of biodiversity indicators within b3gbi is orchestrated through a streamlined and 
flexible workflow, primarily managed by the core function compute_indicator_workflow(). 
This function acts as a central hub, handling data preparation, spatial processing, indicator 
computation, and the final structuring of the output. It intelligently adapts its processing steps 
based on whether a spatial (map-based) or temporal (time-series) indicator is requested, and 
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whether the input is observed data from a processed_cube object or simulated data from a 
sim_cube object. 
 
The workflow can be broken down into the following key stages: 
 

5.1.​ Data Ingestion and Initial Filtering 
The process begins by receiving a processed_cube (for observed data) or sim_cube (for 
simulated data) object. 
 

●​ Time-based Filtering: The input data is initially filtered to include only occurrences 
within the specified first_year and last_year ranges, allowing users to focus analyses 
on specific temporal periods (the fields are optional, and temporal filtering can 
alternatively be done when importing the data with process_cube()). 

●​ Input Validation: Robust checks ensure the input data cube is of the correct class, 
contains actual data, and includes the necessary ‘obs‘ (occurrences) column, preventing 
downstream errors. 

●​ Metadata Collection: Key characteristics of the input data, such as the total number of 
species, years covered, and unique species names, are collected and stored for 
inclusion in the final indicator object. 

5.2.​ Coordinate Reference System (CRS) Management 
b3gbi automates crucial CRS determination and management. The function intelligently detects 
the input CRS (e.g., from "eea", "eqdgc", "mgrs" grid types) and allows for user-specified output 
CRSs. Robust checks ensure unit compatibility, preventing errors and advising users on 
necessary conversions. 

5.3.​ Spatial and Temporal Processing Pathways 
The workflow intelligently adapts based on the requested indicator dimension: 

●​ Spatial Pathway (dim_type = "map"): For map-based indicators, b3gbi performs 
comprehensive spatial data preparation. This includes transforming raw coordinates into 
spatial geometries, generating a uniform analysis grid at a user-specified cell size 
(occurrences can be aggregated to a lower resolution than the input data cube), and 
contextualizing data within user-defined geographic boundaries. This 
contextualization can leverage geographic data from the rnaturalearth package (e.g., 
country borders, lakes, etc.) and allows the integration of external shapefiles. This 
enables highly targeted spatial analysis within specific areas of interest, such as 
protected areas or RAMSAR sites, by filtering indicator calculations to these defined 
regions. This process ultimately links occurrence records to grid cells for spatial 
aggregation. 

●​ Temporal Pathway (dim_type = "ts"): For time-series indicators, the focus shifts to 
direct temporal and spatial filtering of occurrence points within specified geographic 
areas, without grid creation. Similar to the spatial pathway, external shapefiles can be 
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utilized here to restrict the time-series analysis to specific areas of interest, allowing for 
trend analysis within precise boundaries. 

o​ For sim_cube objects (which contain simulated data lacking inherent spatial grid 
information), the workflow bypasses grid creation and detailed spatial 
intersection. sim_cube inputs are only supported via the temporal pathway. 

5.4.​ Indicator Calculation 
This is the core computational step where the actual biodiversity metric is derived. b3gbi 
leverages R's S3 object-oriented system to ensure modularity and extensibility. Based on the 
requested indicator and dimension (spatial or temporal), the system dynamically dispatches to 
the appropriate method.  

5.5.​ Confidence Interval Generation 
For many indicators, b3gbi provides robust uncertainty estimates. Where supported, 
bootstrapped confidence intervals are generated. Users can configure the number of 
bootstrap iterations and the specific type of interval, ensuring flexibility in uncertainty 
quantification. The system issues warnings if confidence intervals are requested for 
unsupported indicators. 

5.6.​ Output Object Construction 
The final stage packages the calculated results into structured and informative S3 objects: 
indicator_map for spatial outputs and indicator_ts for time-series results. These objects are 
also assigned classes specific to the indicator and encapsulate the indicator values, relevant 
metadata, and spatial geometries (for maps), designed for easy subsequent analysis and 
visualisation. This comprehensive workflow ensures consistent and reliable calculation of 
diverse biodiversity indicators with appropriate spatial and temporal contexts. 
 

6.​ Output Structure and Classes 
The compute_indicator_workflow() function in b3gbi is designed to produce highly 
structured and self-describing output objects, implemented as R's S3 classes. These objects 
encapsulate both the calculated indicator values and crucial metadata about the analysis, 
ensuring results are readily interpretable, easily accessible for further programmatic 
manipulation, and prepared for direct visualisation. 
 
b3gbi generates two primary S3 output classes, corresponding to the two main types of 
indicator analysis: 

●​ indicator_map Class: Used when dim_type = "map", this class is designed for spatial 
biodiversity indicators. Its core data container is an sf (Simple Features) data frame, 
providing geometric information for spatial grid cells alongside computed indicator values 
and associated confidence intervals (if calculated). 

●​ indicator_ts Class: Used when dim_type = "ts", this class is designed for 
time-series biodiversity indicators. Its primary data is a tibble (or data.frame) 
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containing temporal identifiers (e.g., year) and the computed indicator values, including 
confidence intervals where applicable. 

Both indicator_map and indicator_ts objects are enriched with comprehensive metadata 
attributes that provide essential context about the indicator, spatial/temporal scope, and original 
data characteristics. 

6.1.​ Common Features and Benefits 
These S3 objects offer significant benefits due to their design: 

●​ S3 Object System: Their S3 nature allows for the definition of generic methods (e.g., 
print() and plot()), ensuring consistent behaviour and ease of interaction for users. 

●​ Self-Describing: By bundling both the data and comprehensive metadata, these objects 
are self-contained and provide all necessary information about how the indicator was 
calculated and what it represents, without requiring external lookups. 

●​ Ready for Analysis: The underlying sf data frame and tibble are standard R data 
structures, making them fully accessible and interoperable with the rich ecosystem of R 
packages for data analysis and visualisation. 

This robust output structure ensures that the results of b3gbi calculations are not just numbers, 
but actionable data products ready for scientific interpretation and communication. 
 

7.​ General Principles of Indicator Calculation 
While b3gbi is capable of computing a diverse array of biodiversity indicators, a set of 
fundamental principles underpins how all these metrics are derived from the structured data 
within processed_cube (or sim_cube) objects. These principles ensure consistency, efficiency, 
and adaptability across various analytical scenarios, whether spatial or temporal. 

7.1.​ Operation on Pre-Aggregated, Filtered and Prepared Data 
A fundamental aspect of b3gbi's workflow is that indicator calculations operate on data that has 
already been aggregated to specific spatial and temporal units (e.g., GBIF data cubes or 
simulated outputs from the gcube package (Langeraert, 2025)). The 
compute_indicator_workflow() function primarily performs filtering and preparation steps on 
this pre-aggregated input (as detailed in Section 5, Workflow for Biodiversity Indicator 
Calculation). The subsequent indicator calculations then involve performing computations on 
these already prepared units, deriving values for each grid cell in spatial indicators or for each 
year in temporal indicators. 

7.2.​ Handling of Data Sparsity and Missing Values 
During calculations on the pre-aggregated data, it is common for some spatial units (grid cells) 
or temporal units (years) to have few or no associated records. The calculation methods 
inherently manage such scenarios: 
 

●​ Units with sufficient data will yield a calculated indicator value. 
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●​ Units with no applicable data (e.g., an empty grid cell within the filtered extent) or 
insufficient data for a valid calculation will typically result in a NA (Not Available) value for 
that indicator in that unit, or may be implicitly excluded, depending on the indicator's 
definition. This allows users to easily identify areas or periods with insufficient sampling. 

7.3.​ Separation of Core Value and Uncertainty Estimation 
The primary value of each indicator is computed as a distinct step. Estimation of uncertainty 
using bootstrapped confidence intervals is handled as a subsequent, optional process by the 
calc_ci() function. This modularity allows for the core indicator to be calculated efficiently, with 
uncertainty analysis added only when specifically requested and supported for that indicator. 
 

8.​ Specific Biodiversity Indicators and Variables 
This section provides information on the individual biodiversity indicators and variables that can 
be calculated using b3gbi (Table 3). A brief definition of what each indicator or variable 
measures is provided, along with some context for its interpretation. For more detailed technical 
information on how each indicator or variable is calculated, see section 14 (Annex). 
 
Table 3: Overview of implemented biodiversity indicators and variables 

Indicator or variable name Type Source Reference 

Total occurrences Variable GBIF  
Density of occurrences (occ/km2) Variable GBIF  
Mean year of occurrences (newness) Variable GBIF  
Species richness Indicator GBIF Magurran, 1988 
Evenness Indicator GBIF Pielou, 1966; Kvålseth, 2015 
Rarity Indicator GBIF Rabinowitz, 1981 
Hill-Shannon diversity Indicator GBIF Hill, 1973 
Hill-Simpson diversity Indicator GBIF Hill, 1973 
Species occurrences EBV GBIF Pereira et al., 2013 
Species range Variable GBIF  
Taxonomic distinctness EBV GBIF Clarke & Warwick, 1999 
Species turnover Indicator GBIF Jaccard, 1901 

 

8.1.​ Observed Species Richness 
8.1.1.​ Definition & Application 

This fundamental indicator quantifies the total number of unique species detected within a given 
spatial unit (e.g., grid cell, for indicator_map) or temporal period (e.g., year, for 
indicator_ts). It provides a straightforward measure of detected biodiversity. 

8.1.2.​ Key Interpretation Note  
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As with any richness metric, interpretation must carefully consider sampling effort and 
completeness. Higher observed richness can reflect increased survey effort rather than true 
ecological differences, or limitations in species detectability. It is best understood as "recorded 
richness." 

8.2.​ Total Occurrences 
8.2.1.​ Definition & Application 

This variable quantifies the overall number of species occurrence records within a spatial unit or 
temporal period. While not a biodiversity indicator itself, it is crucial for understanding data 
comprehensiveness and distribution. It is presented as a map showing data density or a time 
series of annual record counts. 

8.2.2.​ Key Interpretation Note 
Total occurrences serve as a vital contextual tool for interpreting other biodiversity 
indicators. For instance, a high observed richness coupled with low total occurrences might 
suggest sparse but diverse sampling, highlighting potential data biases influenced by sampling 
effort rather than ecological reality.  

8.3.​ Evenness 
8.3.1.​ Definition & Application 

Evenness measures how uniformly individuals (or observations in GBIF data) are 
distributed among species within a given area or over time. It complements species richness 
by providing insight into community structure. b3gbi supports Pielou's Evenness and 
Williams' Evenness, displaying their values spatially on maps (indicator_map) or as trends 
over time (indicator_ts).  

8.3.2.​ Key Interpretation Note 
High evenness suggests species are more equally represented in the dataset, while low 
evenness indicates dominance by a few species. It's crucial to remember that b3gbi's 
calculation is based on proportions of observations, which may not perfectly reflect true 
ecological evenness or individual abundance. 

8.4.​ Rarity 
8.4.1.​ Definition & Application 

Rarity quantifies the scarcity or infrequency of species, and when summed over multiple 
species, serves as a crucial biodiversity indicator for conservation. b3gbi offers two distinct 
measures: Abundance-Based Rarity (based on species' proportional occurrences) and 
Area-Based Rarity (based on species' spatial occupancy). These can be mapped 
(indicator_map) to identify areas with a higher presence of rare species, or tracked over time 
(indicator_ts) to observe changes in overall rarity. 

8.4.2.​ Key Interpretation Note 
High rarity values highlight areas or periods with a greater presence of species that are either 
locally scarce or geographically restricted. This indicator is invaluable for pinpointing vulnerable 
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communities or species in conservation efforts, and changes in rarity can signal environmental 
shifts or population declines.  

8.5.​ Estimated Hill Diversity 
8.5.1.​ Definition & Application 

Hill Diversity provides a unified framework for various diversity measures, allowing for 
different emphases on rare versus common species through a single parameter, q. b3gbi 
calculates three common forms: q=0 (approximates Species Richness, weighing all species 
equally), q=1 (emphasizes common species, like Hill-Shannon), and q=2 (emphasizes 
very common species, like Hill-Simpson). These indicators represent the "effective number 
of species" and can be mapped (indicator_map) or tracked over time (indicator_ts) to 
provide multi-faceted insights into biodiversity patterns. 

8.5.2.​ Key Interpretation Note 
By varying q, users can gain different perspectives on diversity, from emphasizing rare species 
(lower q) to common ones (higher q). b3gbi utilizes coverage-based estimation to mitigate the 
effects of sample size and sampling biases, providing more robust comparisons across samples 
with varying completeness. 

8.6.​ Cumulative Species Richness 
8.6.1.​ Definition & Application 

This indicator tracks the total number of unique species observed from the beginning of a 
specified time period up to a given year. It provides an estimation of how many new species 
are still being recorded over time within a region, helping to evaluate sampling effort and assess 
the overall recorded biodiversity over the study duration. This is an inherently temporal 
indicator, presented as a time series (indicator_ts). 

8.6.2.​ Key Interpretation Note 
A steadily increasing curve suggests ongoing species discovery or improved sampling; a 
flattening curve might indicate that most species have already been recorded. This indicator is 
highly dependent on sampling effort and does not account for species loss. 

8.7.​ Mean Year of Occurrence (Newness) 
8.7.1.​ Definition & Application 

This variable calculates the average year of occurrence for all records within a given spatial 
unit (e.g., grid cell, for indicator_map) or temporal unit (e.g., year, for indicator_ts), providing 
an estimation of the relative recency of observations. Maps can highlight areas with more recent 
average records, while time series show the average observation date over cumulative data. 

8.7.2.​ Key Interpretation Note 
A recent mean year does not automatically imply higher data quality or ecological change; it 
primarily reflects temporal bias or shifts in data collection activity (e.g., new citizen science 
initiatives). It's valuable for understanding the temporal context of available data.  
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8.8.​ Occurrence Density 
8.8.1.​ Definition & Application 

Occurrence Density measures the spatial concentration of records by calculating the total 
number of occurrences per square kilometre. This allows for more meaningful comparisons 
between spatial units of different sizes. It can be displayed as a map (indicator_map) 
illustrating areas with higher concentrations of records, or as a time series (indicator_ts) 
showing changes in the rate of recording over time for the study area. 

8.8.2.​ Key Interpretation Note 
Higher occurrence density values suggest more intensive or thorough survey efforts, making 
this indicator particularly useful for assessing sampling intensity across a landscape and 
identifying well-sampled versus under sampled areas for future data collection planning. 

8.9.​ Species Occurrences 
8.9.1.​ Definition & Application 

This variable provides the number of occurrences for individual species, focusing on their 
observed frequency and distribution. It can serve as a proxy for relative abundance for species 
with similar detectability. It visualizes the observed geographical distribution of a specific species 
on a map (indicator_map) or tracks its annual record counts over time (indicator_ts). 

8.9.2.​ Key Interpretation Note 
As an Essential Biodiversity Variable (EBV), this variable is fundamental for species-specific 
conservation assessments. It directly shows where and when a species has been recorded, 
offering insights into distribution patterns and potential changes in observed range or population 
proxy, but always representing the observed rather than true distribution.  

8.10.​ Species Range 
8.10.1.​ Definition & Application 
Species Range refers to the observed geographical extent of individual species, depicted 
by the grid cells they occupy. This indicator primarily visualizes the distribution of specific 
species based on occurrence data, showing occupied cells on a map (indicator_map). 
Temporally (indicator_ts), it tracks how the number of occupied grid cells for a species 
changes over time, indicating range expansion, contraction, or stability. 

8.10.2.​ Key Interpretation Note 
This variable provides a direct depiction of observed presence, crucial for species distribution 
modelling and conservation planning. However, it represents the observed range, which may be 
a subset of the true ecological range due to incomplete sampling. 

8.11.​ Taxonomic Distinctness 
8.11.1.​ Definition & Application 
Taxonomic Distinctness measures the average taxonomic distance between any two 
randomly chosen species in a sample, incorporating their phylogenetic or taxonomic 
relatedness. A higher value indicates a broader representation of evolutionary history within the 
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community. It can highlight areas on a map (indicator_map) or show trends over time 
(indicator_ts) where species are, on average, more distantly related. 

8.11.2.​ Key Interpretation Note 
This EBV complements richness and evenness by reflecting the evolutionary breadth of a 
community, which is important for ecosystem resilience. Its calculation relies on accurate and 
complete taxonomic information, and interpretation should consider the quality of the underlying 
data.  

8.12.​ Species Turnover 
8.12.1.​ Definition 
Species Turnover measures the rate at which species composition changes over time 
within a community, quantifying the balance between species "gains" and "losses" between 
consecutive time intervals. High turnover indicates a dynamic community with frequent species 
replacement, while low turnover suggests stability. This is an exclusively temporal indicator, 
presented as a time series (indicator_ts). 

8.12.2.​ Key Interpretation Note 
High turnover can signal environmental instability or rapid ecological changes. A key limitation is 
its reliance on complete species lists for each time step; incomplete sampling can lead to 
misinterpretations. Interpretation should consider factors like sampling effort and habitat 
dynamics. 
 

9.​ Bootstrapping and Uncertainty Estimation 
Robust biodiversity indicators require not only point estimates but also measures of their 
uncertainty. The b3gbi package incorporates bootstrapping to calculate confidence intervals, 
providing a range within which the true indicator value is likely to fall. It is intended to outsource 
this functionality to the dubicube package (another product of B3; Langeraert & Van Daele, 
2025) in the near future, but for now this process is managed by the internal calc_ci() generic 
function and its methods. 
 

9.1.​ General Approach to Confidence Interval Calculation 
The calc_ci() function acts as a dispatcher, calling specific methods tailored to each 
biodiversity indicator. It is automatically invoked when calculating a biodiversity indicator over 
time unless explicitly disabled. 
 
The confidence interval logic performs several key steps: 
 

1.​ Calculates Confidence Intervals: It derives lower and upper confidence limits from the 
bootstrap results, with the type of interval being user-configurable. 

2.​ Handles Non-Negative Values: For indicators that cannot be less than zero (e.g., 
rarity), any calculated lower confidence limits that fall below zero are automatically 
converted to zero. 
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3.​ Merges Results: The calculated confidence intervals are integrated with the original 
indicator values by year. 

4.​ Error Handling: Warnings are issued if there's insufficient data to calculate confidence 
intervals for a given unit. 

9.2.​ Bootstrapping Parameters 
Two key parameters control the bootstrapping process: 
 

●​ num_bootstrap: This integer specifies the number of bootstrap replicates to generate 
(default: 1000). A higher number generally leads to more stable confidence intervals but 
increases computation time. 

●​ ci_type: Specifies the type of bootstrap confidence interval to calculate (e.g., "norm" for 
normal approximation). Setting it to "none" will skip CI calculation. 

9.3.​ Indicator-Specific Confidence Interval Considerations 
While the general confidence interval calculation framework is consistent, the specific process 
adapts to the nature of each indicator: 

●​ Indicators with CIs calculated via iNEXT: For Estimated Hill Diversity (including its 
forms representing Hill-derived Species Richness (q=0), Shannon-Hill (q=1), and 
Simpson-Hill (q=2)), confidence intervals are determined externally by the iNEXT 
package (Hsieh et al., 2016) during their initial calculation, leveraging its robust 
coverage-based estimation methods. 

●​ Indicators without Bootstrapped CIs: Confidence intervals are not calculated for the 
following indicators within b3gbi's bootstrapping framework, as their underlying metrics 
or the discrete nature of species presence/absence data make standard resampling of 
individual observations unsuitable for reliable interval estimation: 

o​ Observed Species Richness: This simple count of unique species does not 
utilize b3gbi's internal bootstrapping for uncertainty estimation. This is because 
bootstrapping by resampling individual species can lead to replicates with fewer 
unique species than originally observed. This inherent limitation means the 
bootstrap cannot produce a richness value higher than the observed count, 
causing the upper confidence intervals to be systematically underestimated. 

o​ Cumulative Species Richness: This is an inherently temporal and sequential 
indicator for which CIs are not generated, as its nature as an accumulating count 
over time is not well-suited to standard bootstrapping methods for uncertainty. 

o​ Species Turnover: Confidence intervals are not calculated for this indicator. 
The metric's reliance on comparing the unique species lists between 
consecutive time steps means that bootstrapping individual observations within 
each time step would introduce artificial variability in these lists. This makes the 
resulting gains and losses highly unstable and would lead to unreliable or 
biased confidence intervals for the turnover metric. 
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o​ Taxonomic Distinctness: Confidence intervals are not calculated for this 
indicator. Due to its high sensitivity to the exact species composition and 
taxonomic relationships within a sample, bootstrapping individual occurrences 
can introduce significant artificial variability, leading to unreliable or biased 
confidence intervals. 

●​ Other Indicators with Bootstrapped CIs: For the following indicators, b3gbi applies its 
internal bootstrapping techniques, which involve resampling individual occurrence 
records (or their associated properties) for each unit (year or cell) and then applying a 
specific statistical function to each bootstrap replicate. The aggregated bootstrap results 
are then used to derive the confidence intervals: 

o​ Total Occurrences 

o​ Occurrence Density 

o​ Mean Year of Occurrence (Newness) 

o​ Species Occurrences 

o​ Species Range 

o​ Evenness & Rarity: While b3gbi calculates confidence intervals for these 
indicators, users should interpret them with caution. These metrics are particularly 
sensitive to the observed species list and their relative proportions. Bootstrapping 
individual occurrences may introduce variability that doesn't fully reflect the true 
uncertainty, potentially leading to less reliable confidence intervals, especially in 
communities with many rare species or with imperfect sampling. 

10.​ Mapping and Visualisation 
b3gbi provides robust and flexible visualisation capabilities, enabling users to easily interpret 
and communicate the calculated biodiversity indicators. Leveraging the ggplot2 package for 
plot generation, b3gbi ensures high-quality graphics that can be further customized. The 
plotting system is built around four primary functions, each designed for a specific visualisation 
task, and supports both general biodiversity indicators and species-specific metrics. 
 

10.1.​ Core Plotting Functions 
The b3gbi plotting workflow is managed by four main functions, which are called by 
indicator-specific plot() S3 methods (e.g., plot.obs_richness_map()) dispatched by the 
generic plot() function. 

10.1.1.​ plot_map(): Mapping General Biodiversity Indicators 
This function is designed to create geographical maps of indicator_map objects, displaying the 
spatial distribution of biodiversity metrics. 
 

●​ Input: An indicator_map object. 

●​ Key Features:  
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o​ Data Visualisation: Grid cells are plotted, with fill colour mapped to indicator 
values. 

o​ Coordinate System Handling: Automatically uses the CRS from the 
indicator_map object and sets plot limits (xlim, ylim) based either on the 
data's coordinate range or optional user input. 

o​ Geographical Context: Can optionally include surrounding land areas for better 
geographical context. Background colours for land and oceans are customizable. 

o​ Map Cropping: Offers options to crop maps, including Europe_crop_EEA (to 
exclude far-lying islands from the European continent when using the 
EPSG:3035 projection) and crop_to_grid (to strictly limit the map extent to the 
calculated grid). 

o​ Scale Transformations: Supports various transformations (e.g. 'log', 'boxcox', 
'modulus', 'yj') for the colour fill gradient, useful for visualizing skewed data. 

o​ Customization: Provides extensive parameters for customizing titles, legend 
labels, breaks, colours, and axis limits. 

●​ Output: A ggplot object, which can be further modified if desired using standard 
ggplot2 functions. 

10.1.2.​ plot_ts(): Plotting General Biodiversity Indicator Trends 
This function is used to create time series plots for indicator_ts objects, visualizing how a 
biodiversity metric changes over time. 
 

●​ Input: An indicator_ts object. 

●​ Key Features:  

o​ Data Visualisation: Plots indicator values against year using either points or 
lines. 

o​ Temporal Filtering: Allows users to define minimum and maximum years to 
focus on specific time ranges. 

o​ Smoothed Trendlines: Can overlay a smoothed trendline to highlight overall 
temporal patterns. 

o​ Uncertainty Visualisation: If confidence intervals are present, they can be 
displayed as either error bars or a filled ribbon around the main trend. It also 
supports smoothed confidence envelopes around the loess trendline. 

o​ Aesthetic Controls: Offers broad control over line colours, transparencies 
(alpha), point sizes, line widths, and general plot themes. 

o​ Dynamic Error Bar Width: Error bar width is automatically scaled based on the 
number of years plotted, ensuring consistent visual appearance regardless of the 
time range. 
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●​ Output: A ggplot object for flexible customization. 

10.1.3.​ plot_species_map(): Mapping Individual Species 
Occurrences/Ranges 

This function is specifically designed for visualizing the spatial patterns of one or more individual 
species' occurrences or ranges. 
 

●​ Input: An indicator_map object that contains species-specific data (e.g., derived from 
spec_occ_map() or spec_range_map()). Users must specify which species (by 
taxonKey or scientificName) they wish to plot. 

●​ Key Features:  

o​ Species Filtering: Filters the input indicator_map data to include only the 
specified species, handling both numeric taxonKeys and partial scientificName 
matching. 

o​ Multi-Species Plotting: If multiple species are selected, their individual maps 
are combined into a single multi-panel plot by default. Users can also opt to plot 
each species separately. 

o​ Contextual Background: Plots the full indicator_map grid (excluding 
species-specific data) as a grey background layer, providing geographical context 
for the species' distribution. 

o​ Customization: Inherits many customization options from plot_map(), including 
title, legend, axis limits, and surrounding land features. It also allows suppressing 
the legend. 

●​ Output: A single ggplot object (if combined) or a list of ggplot objects (if plotted 
separately). 

10.1.4.​ plot_species_ts(): Plotting Individual Species Trendlines 
This function is specialized for generating time series plots of individual species' occurrences or 
range sizes over time. 

●​ Input: An indicator_ts object that contains species-specific time series data (e.g., 
from spec_occ_ts() or spec_range_ts()). Users must specify which species to plot. 

●​ Key Features:  

o​ Species Filtering: Filters the input indicator_ts data to focus on the selected 
species. 

o​ Multi-Species Plotting: Similar to plot_species_map(), it combines multiple 
species' time series into a single multi-panel by default, or can plot them 
separately if specified. 

o​ Trendlines and Uncertainty: Incorporates options for smoothed trendlines and 
visualizing confidence intervals (error bars or ribbons), similar to plot_ts(). 
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o​ Aesthetic Customization: Provides extensive control over plot aesthetics, 
including colours, line/point styles, axis labels, and title wrapping. 

●​ Output: A single ggplot object (if combined) or a list of ggplot objects (if plotted 
separately). 

10.2.​ Generic plot() S3 Methods 
b3gbi implements S3 generic plot() methods for each calculated indicator. These methods act 
as convenient wrappers, allowing users to simply call plot() on an indicator object (e.g., 
plot(my_obs_richness_map)) without needing to manually select the correct underlying 
plotting function or define standard labels. 
 
Each S3 plot() method performs the following: 
 

1.​ Object Class Validation: Verifies that the input x belongs to the expected indicator 
class (e.g., obs_richness, tax_distinct). 

2.​ Object Type Dispatch: Checks whether x is an indicator_ts or indicator_map 
object. 

3.​ Default Parameter Setting: Based on the indicator's class and whether it's a time series 
or map, it sets appropriate default values for:  

o​ The default label for the y-axis in time series plots. 

o​ The default label for the colour legend in map plots. 

o​ The default main title for the plot. 

4.​ Function Call: Dispatches the plotting request to the appropriate core plotting function 
(plot_map(), plot_ts(), plot_species_map(), or plot_species_ts()), passing the x 
object, the determined default labels and title, and any additional arguments provided by 
the user. This allows users to easily override defaults. 

This architecture ensures a user-friendly plotting interface, where indicator-specific details are 
handled automatically, while still providing full control over plot aesthetics. 
 

11.​ Conclusion 
The b3gbi R package has been developed to address the increasing need for standardised, 
reproducible, and robust methods for calculating biodiversity indicators from large datasets, 
such as those made available through the Global Biodiversity Information Facility (GBIF). b3gbi 
provides a comprehensive and user-friendly automated workflow for calculating a diverse suite 
of spatial and temporal biodiversity indicators and visualising the results. 

Through this workflow, b3gbi offers users a flexible approach to analyse a variety of general 
biodiversity metrics, including both diversity and occurrence-based measures. The package 
supports the exploration of biodiversity trends over time and spatial variations, with integrated 
capabilities for uncertainty estimation and smoothed trend analysis. By leveraging the inherent 
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structure of these data cubes, the b3gbi workflow ensures an efficient and scalable method for 
assessing biodiversity metrics across different spatial and temporal resolutions. 

As the final step in the workflow, b3gbi integrates powerful visualisation tools, built on ggplot2, 
to generate customizable maps and time series plots. Originating from the B3 project, b3gbi 
aims to contribute to more accessible and transparent biodiversity data analysis, facilitating 
reproducibility of assessments and reporting obligations and supporting critical efforts in 
conservation science and policy. 

In summary, b3gbi provides a versatile and robust workflow for researchers, conservation 
practitioners, and policymakers to derive meaningful insights from biodiversity occurrence data. 
By offering standardised processes, a broad range of indicators, and flexible visualisation 
options, the package supports a more comprehensive understanding of biodiversity trends, 
thereby aiding ecological research, environmental monitoring, and the development of effective 
conservation strategies. 
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14.​ Annex 
This annex provides additional technical details that were excluded from the main text to avoid 
overwhelming the reader, but may be of interest to some. 
 

14.1.​ Dependencies 
b3gbi relies on functions from a number of useful R packages, which are briefly described in 
Tables A1 and A2. 
 
Table A1. Core R package dependencies (required) 

Package Primary Role/Functionality 

boot Provides functions for bootstrapping and related statistical methods 
dplyr Offers a consistent grammar for data manipulation and transformation 
ggplot2 Used for generating high-quality data visualisations 

iNEXT Facilitates interpolation and extrapolation of species richness and 
diversity 

labeling Supports label placement in plots (often via ggplot2) 
magrittr Provides the pipe operator (%>%) for readable code 
mgrs Handles Military Grid Reference System (MGRS) conversions 
patchwork Simplifies combining multiple ggplot2 plots into a single layout 
permute Tools for permutations of data for statistical analyses 
purrr Iterates functions over lists and vectors in a consistent way 
readr Provides fast and friendly functions for reading rectangular data 
rlang Offers tools for building R packages and working with expressions 
rnaturalearth Facilitates access to natural earth vector and raster map data 
scales Tools for scaling, training, and mapping data values to visual properties 
sf Essential for handling and manipulating simple features spatial data 
stringr Simplifies common string operations 
tibble Modern reimplementation of data frames, for clearer data structures 
tidyr Tools for tidying data, helping to reshape and organize 
units Handles, converts, and manipulates physical units 

 
Table A2. Suggested dependencies (required only for specific functionality) 

Package Primary Role/Functionality 

bold (>= 1.3.0) Provides functions to make text bold in the R console output 
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knitr Weaves R code and output into dynamic reports 

mockr Tools for mocking and stubbing functions, primarily for unit testing in R 

rmarkdown Generates dynamic reports and documents from R code and Markdown 

rnaturalearthdata Provides vector map data from Natural Earth for R 

taxize (>= 0.9.99) Retrieves and standardizes taxonomic data from online sources 

testthat (>= 3.0.0) Provides a framework for unit testing code in R 
 

14.2.​ Indicator calculation methodologies 
14.2.1.​Observed Species Richness 
Within b3gbi, the calculation of Observed Species Richness leverages the structured nature of 
the processed_cube input, using taxonKey to identify species. 
 

●​ Spatial Analysis (dim_type = "map"): When obs_richness_map() is called, it triggers 
the calc_map.obs_richness() method. This method directly counts the number of 
unique taxonKey values for each cellid using a dplyr::summarize operation. The 
diversity_val column then holds the observed species richness for each grid cell. 

●​ Temporal Analysis (dim_type = "ts"): When obs_richness_ts() is called, it invokes 
the calc_ts.obs_richness() method. This method is analogous to its spatial 
counterpart but groups the distinct taxonKey counts by year instead of cellid. The 
diversity_val column in this case represents the observed species richness for each 
year. 

14.2.2.​ Total Occurrences 
b3gbi calculates total occurrences by summing all records (indicated by the obs column, 
representing the number of occurrences). 
 

●​ Spatial Analysis (dim_type = "map"): Calling total_occ_map() invokes the 
calc_map.total_occ() method. This method sums the obs values for all records within 
each cellid using dplyr::summarize. The diversity_val column stores the total 
number of observed occurrences for each grid cell. 

●​ Temporal Analysis (dim_type = "ts"): When total_occ_ts() is called, it triggers 
calc_ts.total_occ(). This method calculates the total number of occurrences by 
summing the obs values for all records, grouped by year. The diversity_val column 
indicates the total number of observed occurrences across the entire study area for each 
respective year. 

14.2.3.​Evenness 
Both Pielou's and Williams' evenness measures rely on the proportion of occurrences for each 
species (pi) and the total number of species (S) within each aggregation unit (cell or year). 
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●​ Core Spatial Calculation (calc_map.evenness_core()): When 
pielou_evenness_map() or williams_evenness_map() are called, they dispatch to 
calc_map.evenness_core(). This internal function calculates the total number of 
occurrences (num_occ) for each unique taxonKey within each cellid. It then reshapes 
this data into a matrix-like structure (cells as columns, species as rows), replaces NAs 
with 0, and applies compute_evenness_formula() to calculate evenness for each cell. 

●​ Core Temporal Calculation (calc_ts.evenness_core()): When 
pielou_evenness_ts() or williams_evenness_ts() are called, they dispatch to 
calc_ts.evenness_core(). This function follows a very similar logic to its spatial 
counterpart, but the aggregation and pivoting are performed on year rather than 
cellid, applying compute_evenness_formula() to each year. 

●​ Evenness Formulas (compute_evenness_formula()): This internal function takes the 
observation counts for species within a given aggregation unit (cell or year) and the 
specified type of evenness.  

o​ Pielou's Evenness (from Pielou, 1966): Calculated as a transformation of the 
Simpson's index. The formula implemented is:  

 
−

𝑖=1

𝑆

∑ 𝑝
𝑖
×𝑙𝑜𝑔 𝑝

𝑖( )
𝑙𝑜𝑔 𝑆( )

where S is the number of species and pi is the proportion of occurrences 
represented by species i. If S=1 (only one species), the denominator becomes 0, 
leading to NaN. In this case, the indicator value is explicitly set to NA as evenness 
is undefined. 

o​ Williams' Evenness (from Kvålseth, 2015): Derived from the Gini-Simpson 
index. The formula implemented is:  
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where S is the number of species and pi is the proportion of occurrences 
represented by species i. If S=1, the denominator (S−1) becomes 0, leading to 
NaN. In this case, the indicator value is explicitly set to NA. 

14.2.4.​ Rarity 
b3gbi calculates the total summed rarity for each grid cell or year by aggregating the rarity 
values of each species present in that unit. 
 

●​ Abundance-Based Rarity (Spatial - calc_map.ab_rarity()): 

1.​ For each cellid and taxonKey, it calculates obs_taxon (total occurrences of 
that species in that cell) and obs_cell (total occurrences in that cell). 

2.​ Then, for each species within a cell, its rarity is 1/(obs_taxon/obs_cell). 
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3.​ Finally, it sums these rarity values for all species within each cellid. 

●​ Abundance-Based Rarity (Temporal - calc_ts.ab_rarity()): 

1.​ It first calculates records_taxon (total occurrences of each taxonKey across all 
years and cells) and then rarity = 1 / (records_taxon / sum(obs)) for 
each occurrence, where sum(obs) is the total occurrences in the entire dataset. 
This implies a global rarity for each species based on its overall abundance. 

2.​ These rarity values are summed per year and cellid. 

3.​ Finally, these cell-level sums are aggregated by summing them again for each 
year to yield the diversity_val for that year. 

●​ Area-Based Rarity (Spatial - calc_map.area_rarity()): 

1.​ It calculates occ_by_taxa (the number of unique cellids each taxonKey occurs 
in across the entire dataset) and total_cells (the total unique cellids). 

2.​ Then, for each species, its rarity is 1/(occ_by_taxa/total_cells). 

3.​ Finally, for each cellid, it sums the rarity values of all species present in that 
cell. 

●​ Area-Based Rarity (Temporal - calc_ts.area_rarity()): 

1.​ It calculates rec_tax_cell (the number of unique cellids each taxonKey 
occurs in across all years and cells) and sum(dplyr::n_distinct(cellid)) (the 
total number of unique cells in the dataset). 

2.​ Then, for each species, its rarity is 
1/(rec_tax_cell/sum(dplyr::n_distinct(cellid))), implying a global rarity 
for each species based on its overall spatial occupancy. 

3.​ These rarity values are summed per year and cellid. 

4.​ Finally, the diversity_val for each year is computed as the mean of these 
cell-level rarity sums within that year. 

14.2.5.​ Estimated Hill Diversity 
Hill diversity (from Hill, 1973) is calculated as:  

 𝐷 =  
𝑖=1

𝑆

∑ 𝑝
𝑖

𝑟
𝑖( )𝑙( )1/𝑙

 

where D is diversity, S is the number of species, pi is the proportion of occurrences represented 
by species i, and ℓ determines the rarity scale for the mean. 

b3gbi uses coverage-based estimation to calculate Hill diversity values, aiming to mitigate 
the effects of sample size and sampling biases. This involves standardising by coverage, where 
coverage is the proportion of individuals in the theoretical community belonging to the species 
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that were observed in the sample. The iNEXT package (Chao et al., 2014; Hsieh et al., 2016) for 
R is used to estimate species richness at an equal level of coverage (e.g., 0.95) for each cell or 
year in the biodiversity data cube. 

●​ Required Parameters: For Hill diversity calculations, users must specify:  

o​ coverage: The target sample coverage value for the estimator (default: 0.95). 

o​ cutoff_length: The minimum number of data points for each grid cell or year. 
Units with fewer data points than this threshold will be removed before 
calculations to avoid errors (default: 5). 

●​ Method Dispatch:  

o​ hill0_map() and hill0_ts() set type = "hill0". 

o​ hill1_map() and hill1_ts() set type = "hill1". 

o​ hill2_map() and hill2_ts() set type = "hill2". 

Hill diversity calculations in b3gbi utilize coverage-based estimation via a wrapper function 
my_estimateD() which interfaces with the iNEXT package (Hsieh et al., 2016). 
 

●​ Core Spatial Calculation (calc_map.hill_core()): When hill0_map(), 
hill1_map(), or hill2_map() are called, they dispatch to calc_map.hill_core(). This 
internal function extracts the qval (0, 1, or 2), cutoff_length, and coverage. It then 
processes data grouped by cellid to create presence-absence incidence matrices, 
filters cells with insufficient species (cutoff_length), and finally calls my_estimateD() 
(from iNEXT) with datatype = "incidence_raw", base = "coverage", level = 
coverage, and q = qval. 

●​ Core Temporal Calculation (calc_ts.hill_core()): When hill0_ts(), hill1_ts(), 
or hill2_ts() are called, they dispatch to calc_ts.hill_core(). This function follows 
a similar logic but aggregates data by year. 

1.​ It extracts the qval and parameters like cutoff_length and coverage. 

2.​ It groups the input data (x) by year and for each year creates an occurrence 
matrix where rows are internal row identifiers and columns are 
scientificNames, containing obs values (converted to 1 for presence if greater 
than 1). This involves multiple dplyr and tidyr operations to transform the data. 

3.​ Years with fewer unique species than cutoff_length are removed to prevent 
iNEXT errors. 

4.​ The processed occurrence matrices for each year are then passed to 
my_estimateD() (a wrapper for iNEXT::estimateD()), using datatype = 
"incidence_raw", base = "coverage", level = coverage, and the appropriate 
q = qval. 

The output indicator table includes the qD (estimated diversity), t (sample size estimate), SC 
(coverage), Order.q (diversity type), and confidence intervals (qD.LCL, qD.UCL) for each year. 
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14.2.6.​ Cumulative Species Richness 
The calculation of cumulative species richness involves tracking all distinct species identified in 
the dataset up to a particular point in time. 
 

●​ Temporal Analysis (dim_type = "ts"): When cum_richness_ts() is called, it 
dispatches to calc_ts.cum_richness(). This method performs the following steps. The 
diversity_val column represents the total count of distinct species observed from the 
first year up to the respective year. 

1.​ It selects year and taxonKey columns and arranges the data by year. 

2.​ It then identifies all unique taxonKey values for each year, effectively listing new 
species observed in that year, and counts them as unique_by_year. 

3.​ Finally, it calculates the cumulative sum of unique_by_year values. This ensures 
that a species, once observed, contributes to the cumulative count for all 
subsequent years.  

Spatial Application (dim_type = "map"): This indicator is inherently temporal, and a direct 
spatial map analogue is not provided, as cumulative richness is typically applied to trends over 
time. 
 

14.2.7.​ Mean Year of Occurrence (Newness) 
The mean year of occurrence indicates the "newness" of observations. 
 

●​ Spatial Analysis (dim_type = "map"): When newness_map() is called, it dispatches to 
calc_map.newness(). This method computes the arithmetic mean of the year values for 
all occurrences within each cellid using dplyr::summarize, rounded to the nearest 
integer. An optional newness_min_year parameter can filter results below a threshold. 

●​ Temporal Analysis (dim_type = "ts"): When newness_ts() is called, it triggers 
calc_ts.newness(). This method calculates the cumulative mean year of occurrence. 
For each year in the time series, it calculates the mean of all year values from the 
beginning of the dataset up to and including that specific year. This approach provides a 
smooth trend of the average observation date over the entire cumulative dataset, rather 
than a snapshot mean for each individual year. 

14.2.8.​ Occurrence Density 
Occurrence Density is calculated by summing the total number of occurrences (obs) per unit 
area (square kilometre). 
 

●​ Spatial Analysis (dim_type = "map"): Calling occ_density_map() triggers 
calc_map.occ_density(). This method sums all obs values within each cellid and 
then divides this sum by the area (in km2) of that cell. A check ensures a projected CRS 
is used. 
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●​ Temporal Analysis (dim_type = "ts"): When occ_density_ts() is called, it triggers 
calc_ts.occ_density(). This method first calculates the occurrence density for each 
individual cellid within each year (sum of obs divided by area). Subsequently, for each 
year, it calculates the mean of these cell-level densities to provide a single annual 
occurrence density value for the entire study area.  

14.2.9.​ Species Occurrences 
The calculation involves summing the total number of occurrences (obs) for a given species 
(taxonKey) within each aggregation unit. 
 

●​ Spatial Analysis (dim_type = "map"): When spec_occ_map() is called, it dispatches 
to calc_map.spec_occ(). This method calculates the total obs for each unique 
combination of taxonKey and cellid. It then selects distinct combinations of cellid and 
scientificName, reporting the total occurrences for each species within each cell where 
it was observed. 

●​ Temporal Analysis (dim_type = "ts"): When spec_occ_ts() is called, it dispatches 
to calc_ts.spec_occ(). This method calculates the total obs for each unique 
combination of taxonKey and year. It then selects distinct combinations of year and 
scientificName, reporting the total occurrences for each species within each year it 
was observed. This function explicitly retains taxonKey and scientificName in the 
output, indicating its species-specific nature for time series analysis. 

14.2.10.​ Species Range 
●​ Spatial Analysis (dim_type = "map"): When spec_range_map() is called, it 

dispatches to calc_map.spec_range(). This method effectively flattens all occurrences 
of a species within a cell to a simple presence (diversity_val = 1). It then ensures 
that only one entry per cellid and scientificName combination is retained, indicating 
that the species was observed in that cell. 

●​ Temporal Analysis (dim_type = "ts"): When spec_range_ts() is called, it 
dispatches to calc_ts.spec_range(). This method calculates the number of distinct 
grid cells a species was observed in for each year. This provides a measure of the 
observed spatial extent of a species' range within each year. The diversity_val in this 
case represents the count of grid cells occupied by a given species in a given year. 

14.2.11.​ Taxonomic Distinctness 
Calculating taxonomic distinctness requires an external taxonomic hierarchy. b3gbi uses the 
taxize package (Chamberlain & Szöcs, 2013; Chamberlain et al., 2020) to retrieve this 
information and then computes the distinctness for each aggregation unit. 
 

●​ Core Spatial Calculation (calc_map.tax_distinct()): It retrieves the taxonomic 
hierarchy for all unique scientificNames from GBIF using my_classification(). This 
hierarchy is then used by compute_tax_distinct_formula() to calculate taxonomic 
distinctness for each cellid. 
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●​ Core Temporal Calculation (calc_ts.tax_distinct()): When tax_distinct_ts() is 
called, it dispatches to calc_ts.tax_distinct(). This function performs similar steps to 
its spatial counterpart but groups the analysis by year, applying 
compute_tax_distinct_formula() to the species present in each year. 

●​ Taxonomic Distinctness Formula (compute_tax_distinct_formula()): This internal 
function calculates the average taxonomic distance between species within a sample.  

1.​ It first filters the complete taxonomic hierarchy (y) to include only the species 
(x$scientificName) present in the current aggregation unit (cell or year). 

2.​ It checks if the number of species (n_spec) in the aggregation unit is less than 3. 
If so, taxonomic distinctness cannot be meaningfully calculated, and the function 
returns NA. 

3.​ If n_spec is 3 or more, it uses taxize::class2tree() to construct a taxonomic 
tree from the subsetted hierarchy. 

4.​ From this tree, tax_tree$distmat provides a pairwise distance matrix between 
all species based on their shared taxonomic ranks. The distance is a measure of 
how far apart two species are on the taxonomic tree (e.g., sharing a genus but 
not a family would have a smaller distance than sharing only a phylum). 

5.​ The taxonomic distinctness is then calculated as the Taxonomic Distinctness 
Index (TDI; from Clarke & Warwick, 1999), the sum of all unique pairwise 
distances (sum(tax_distance)) divided by the total number of unique pairwise 
comparisons possible for n_spec species, which is given by the formula  

 ∑
𝑖 < 𝑗
∑

𝑅
𝑖
−𝑅

𝑗| |( )
𝐿( )/ 𝑆 𝑆−1( )

2( )
where S is the number of species, Ri and Rj are the taxonomic ranks of species i 
and j, and L is the maximum number of taxonomic ranks. 

14.2.12.​ Species Turnover 
Species turnover is a temporal indicator that compares the species lists between consecutive 
years. 
 

●​ Temporal Analysis (dim_type = "ts"): When occ_turnover_ts() is called, it 
dispatches to calc_ts.occ_turnover(). This method calculates turnover for each year 
compared to the preceding year (the first year's turnover is undefined/NA). The 
diversity_val for each year (except the first) represents the species turnover rate. The 
process involves: 

1.​ Organizing the species (identified by taxonKey) present in each year into a list 
(ind_list). 

2.​ For each year y (starting from the second year):  
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▪​ tax_added: Identifies species present in year y but not in year y-1 
(setdiff(ind_list[[y]], ind_list[[y-1]])). 

▪​ tax_lost: Identifies species present in year y-1 but not in year y 
(setdiff(ind_list[[y-1]], ind_list[[y]])). 

▪​ tax_present: Identifies species present in both year y-1 and year y 
(intersect(ind_list[[y-1]], ind_list[[y]])). 

3.​ The species turnover for year y is then calculated using a modified Jaccard-like 
dissimilarity index:  

 𝑏+𝑐
𝑎+𝑏+𝑐

where a is the species present in both years, b is the species present in year y 
but not y-1 and c is the species present in year y-1 but not y. 

●​ Spatial Analysis (dim_type = "map"): This indicator is inherently temporal and not 
applicable for a single spatial snapshot. 

14.3.​ Indicator-Specific Confidence Interval Calculation Details 
14.3.1.​ Hill Diversity (Richness, Shannon-Hill, Simpson-Hill) 

For Hill Richness (hill0), Shannon-Hill Diversity (hill1), and Simpson-Hill Diversity 
(hill2), the confidence intervals are not calculated directly by the calc_ci methods using the 
boot package. Instead, their confidence intervals are determined externally by the iNEXT 
package (Chao et al., 2014; Hsieh et al., 2016), which is integrated into the 
calc_ts.hill_core() function during the initial indicator calculation. The 
calc_ci.hill_core() function primarily serves as a check to ensure these confidence intervals 
have already been computed. 
 

14.3.2.​ Total Occurrences (total_occ) 
●​ Bootstrapping: The raw observation counts (obs) for each year are collected. The 

boot::boot() function is then applied to these annual lists of observations. 

●​ Statistic: The boot_statistic_sum function is used, which calculates the sum of 
observations in each bootstrap replicate. 

●​ Integration: The resulting bootstraps are passed to calc_ci.core() to derive and 
merge the confidence intervals. 

 

14.3.3.​ Occurrence Density (occ_density) 
●​ Bootstrapping: For each year, the occurrence density per cell (sum of observations per 

cell divided by cell area) is calculated. These cell-based density values are then grouped 
by year, and boot::boot() is applied. 
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●​ Statistic: The boot_statistic_mean function is used, calculating the mean of the 
density values across cells in each bootstrap replicate. 

●​ Integration: The bootstraps are then processed by calc_ci.core(). 

 

14.3.4.​ Newness (newness) 
●​ Bootstrapping: For each year, the data includes all years up to the current year. The 

boot::boot() function is applied to lists of these years. 

●​ Statistic: A specific boot_statistic_newness function is utilized. It calculates the 
"newness" value for each bootstrap sample. 

●​ Integration: The resulting bootstraps are processed by calc_ci.core(). 

 

14.3.5.​ Evenness (Pielou's and Williams') 
●​ Bootstrapping: For each year, the number of occurrences (num_occ) for each species 

(taxonKey) is summarized and pivoted into a wide format. boot::boot() is then applied 
to these species occurrence vectors for each year. 

●​ Statistic: A custom boot_statistic_evenness function is used. This function takes the 
bootstrapped species counts and recalculates either Pielou's or Williams' evenness 
based on the type argument ("pielou_evenness" or "williams_evenness"). 

●​ Special Handling: An internal ci_error_prevent() function is applied to the bootstrap 
results before calc_ci.core() to handle potential NA values that might arise if bootstrap 
samples result in undefined evenness (e.g., only one species). 

●​ Integration: The adjusted bootstraps are then passed to calc_ci.core(). 

 

14.3.6.​ Abundance-based Rarity (ab_rarity) and Area-based Rarity 
(area_rarity) 

●​ Bootstrapping:  

o​ For abundance-based rarity, the rarity of each observation is calculated based 
on total occurrences per taxon, and then these rarity values are grouped by year 
for bootstrapping. 

o​ For area-based rarity, species rarity per cell (based on the number of cells a 
species occupies) is aggregated by year, and these aggregated rarity values are 
bootstrapped. 

●​ Statistic:  

o​ boot_statistic_sum is used for abundance-based rarity. 

o​ boot_statistic_mean is used for area-based rarity. 
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●​ Integration: The bootstraps are passed to calc_ci.core(). The calc_ci.core() 
function ensures that the lower confidence interval for rarity does not fall below zero. 

 

14.3.7.​ Species Occurrences (spec_occ) and Species Range (spec_range) 
●​ Bootstrapping: For these species-specific indicators, the bootstrapping is performed 

per species across years and grid cells. The observations (or presence/absence for 
range) are summarized by taxonKey, year, and cellCode, then split by taxonKey. For 
each species, the data is pivoted to have years as columns, and boot::boot() is 
applied to the time series of observations/range values. 

●​ Statistic: The boot_statistic_sum function is used for both species occurrences and 
species range. 

●​ Integration: The confidence intervals are calculated for each species individually using 
get_bootstrap_ci(), then combined into a single data frame before being joined with 
the main indicator data frame. The lower confidence interval is adjusted to zero if 
negative. 

 

14.4.​ Example plots 

 
Figure 2. Time series of the total occurrences of mammals in Denmark from 2000-2023. 
The cube was downloaded from GBIF using the EQDGC grid. The orange dots show the 
actual values with the vertical orange lines representing the uncertainty. The blue line 

39 



D5.1 Indicators workflow 
 
 
represents the smoothed values, with the light blue envelope representing the smoothed 
uncertainty. 
 

 
Figure 3. Map of the observed species richness of mammals in Denmark from 2000-2023. 
The cube was downloaded from GBIF using the EQDGC grid.  The black grid lines show 
the outlines of individual cells. 
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Figure 4. Map of the observed species richness of mammals in Denmark from 2000-2023. 
The cube was downloaded from GBIF using the EQDGC grid.  This plot uses the same 
data as Fig. 3 but the parameter include_ocean was set to FALSE when calculating the 
indicator and visible_gridlines was set to FALSE when creating the plot. Cell borders are 
still visible but less obvious. 
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